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1 Introduction

I want to start with a motivation and an answer to the question, why is computational
physics important?
The computational performance will continue to increase obeying Moore’s law until

at least to the year 2020 and also the complexity of the systems able to investigate
with the help of state-of-the-art computers will increase. Therefore the calculation of
“real” systems becomes more and more important to gain a better understanding of the
condensed matter. A lot of methods have been developed to investigate the electronic,
magnetic, thermal, optical properties and more of the condensed matter. Beside the
scientifically important issue of gaining a better understanding these calculations could
also have the predictive power to lead to technologically advanced materials. Therefore
no one should underestimate the role of computational physics in the physics.

In the following I want to focus on the calculation of the electronic and magnetic
ground state properties. One of the most prominent ways to determine the electronic
and magnetic ground state properties is the density functional theory (DFT) [1, 2]. Its
rather accurate description has lead to many success stories and it has the big advantage
to be parameter-free (i. e. ab-initio). This means that no external, empirical parameters
have to be used for calculation and therefore DFT can be applied to general systems.
However, there are systems which can not be explained within DFT as for example
strongly correlated systems. But if we limit the systems to the cases where DFT yields
a nice description one could ask, where is the advantage to use non-DFT based methods
instead?

This is a legitimate question, because DFT-based methods yield the most accurate
and reliable results of all methods constructed on an one-electron Schrödinger equation
as far as I know. But keep in mind that this accuracy has its price. The required
computational time for treating large and complex systems represents a challenge even
on tomorrow’s computers. In addition the more accurate results the more complex the
DFT-based method, which makes it more difficult to obtain a physical interpretation of
the results. Therefore it would be helpful to have a fast and simple method, which allows
to investigate tendencies and the qualitative behaviour of the electronic and magnetic
structure to gain a better understanding. The JuTiBi code explained in this docu-
mentation is suited to these demands. The JuTiBi code is based on a parametrized
tight-binding scheme, which allows fast calculations combined with a large freedom of
changing physically insightful parameters to perform “numerical experiments”.

First I want to give you a short overview over the tight-binding Hamiltonian used in
the JuTiBi code:

H = H0 +Hmag +HLCN +HSOC . (1.1)
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Introduction

H0 contains the on-site energies and the hopping elements, which parametrization is
based on the NRL-TB method [3, 4, 5, 6] and therefore ensures parameter sets with
a high degree of transferability. This means that a parameter set suited to a special
structure can be used also for a qualitatively satisfying description of a similar struc-
ture. For describing magnetism a Stoner model [7, 8] is included via Hmag, which can
be straightforwardly modified for non-collinear magnetic systems. Tuning the Stoner
parameters allows to change magnetic moments and the polarization and therefore is
an example for the aforementioned “numerical experiments”. The implementation of the
Stoner model allows a self-consistent calculation of the charges. In this self-consistent
cycle HLCN assures local charge neutrality. The implementation of the generalized Bloch
theorem [9, 10, 11] makes sure that spin spiral calculations for each spin-spiral vector q
can be performed on the same unit cell. Even under consideration of spin-orbit coupling
(SOC) via the Hamiltonian HSOC, the advantage of the generalized Bloch theorem can
be utilized by treating SOC in 1st order perturbation theory [12, 13]. This tight-binding
model has been successfully used for calculations of magnetic properties in Fe-systems
[14, 15, 16], Pt-systems [17, 16] and Fe/Pt-systems [16].
So, what can be done with the JuTiBi code?
The JuTiBi code is suited to treat complex magnetic structures of moderate system-

size, in particular spin-spirals. Therefore the code could be very useful to calculate the
data needed to obtain the Heisenberg exchange-coupling parameters, the Dzyaloshinskii-
Moriya constant and the magneto-crystalline anisotropy. The code can treat bulk-,
surface-, chain- and cluster-systems and for almost all transition metals high-quality
NRL-TB parameter sets do exist [4].
Due to the parametrization a lot of physical properties can be tuned to get a feeling

for the most important physics in a these systems. For example the spin-polarization can
be controlled via the Stoner parameters, the SOC-strength via the SOC-parameters and
in principle there is even the possibility to control each hopping element of the system.
Beside the investigation of magnetic structures the code can be also used to investigate
pure SOC-related phenomena as for example the Rashba-splitting. Due to the simplicity
of the SOC-description in the tight-binding code, one could again get a feeling for the
main mechanisms of this phenomena.
For users who are interested in calculating transport properties the JuTiBi code could

be also of interest. In the recent version no transport is included, however it should be
not too difficult to exploit the tight-binding scheme for transport problems.
Every method has also disadvantages and a disadvantage of the here used parametrized

tight-binding method is the quantitative description. The parameter sets in the NRL-TB
parametrization are obtained from fits to ab-initio band structures of the corresponding
bulk geometries. Therefore the description of a surface- or chain-system does not yield
reliable quantitative results. The same problem regards the treatment of binary systems
within the NRL-TB scheme. However, the qualitative description is in a rather nice
agreement to ab-initio results [16]. Therefore let us conclude and determine if the code
is useful for your purposes:
You should use the code if you want to perform fast calculations and you do not care

about the exact numerical values, but rather the tendencies. If you want to analyse a
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system by tuning particular properties as the polarization, the SOC-strength etc. to gain
a better understanding, therefore to say it short - to conduct “numerical experiments” -
this code could be also very useful. If you have the results of an ab-initio calculation,
but it is quite too difficult to extract the important physical quantities for the behaviour
the JuTiBi code could be also helpful.

Now when do you should not work with the JuTiBi code? If you want to have a
numerical precise prediction of a physical quantity as for example the magneto-crystalline
anisotropy of a system you should use other methods.

Additionally I want to remark that in the recent version of the JuTiBi code you should
not use it to perform calculations for very large system (i. e. several hundert atoms). In
principle one can (easily) extend it to treat such systems, but in this version the code is
especially designed to investigate the magnetic interactions in systems of a size, which
should not exceed 100 atoms. In particular users interested in spin-spiral calculations
should take a deeper look into my code.

Finally I want to give a short outline, what you have to expect in this documentation.
First a detailed description of the theory behind the tight-binding scheme is presented

in chapter 2. Then the inputcard of the JuTiBi code is explained in thematic sections
in the chapter 3. In the next chapter 4 the output of the JuTiBi code is described in
detail. First the output on the screen is presented in section 4.1, then all external files
are explained in section 4.2. In the tutorial in chapter 5 the user can exercise with
the JuTiBi code using well chosen examples in a reasonable order, which assures a well
learning curve. I would recommend all possible users to work through this chapter!

The next chapter and the following appendices are suited to users, who want to modify
the code or want to understand the code structure in detail. First a detailed description
of the most important subroutines of the JuTiBi code together with an overview of
the code structure is presented in chapter 6. The appendices contain some detailed
calculations for the the theory (appendix A), the parameter sets for Fe and Pt (appendix
B), an example of the full inputcard to get a feeling of its structure (appendix C; to
read details better use magnifying glasses ;)), a full list of the appearing keywords in
the inputcard with short description (appendix D), a full list of all important variables
appearing in the JuTiBi code with short description (appendix E) and finally a list of
all data sets contained in the JuTiBi package to check completeness.

I wish the users a lot of fun using the JuTiBi code and if you have some constructive
critic or questions concerning the JuTiBi code please feel free to mail to t.schena@fz-
juelich.de.

9
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2 Theory

2.1 Motivation

The Holy Grail of condensed matter physics is the solution of the eigenvalue problem of
the following Hamiltonian:

H = Te + Tc + Ve−c + Ve−e + Vc−c , (2.1)

with Te = −∑i
1
2
∇2
i the kinetic energy of the electrons, Tc = −∑α

1
2Mα
∇2
α the kinetic

energy of the nuclei, Ve−c = −∑α

∑
i

Zα
|ri−Rα| the Coulomb interaction between the

electrons and the nuclei, Ve−e = 1
2

∑
i

∑
j 6=i

1
|ri−rj | the Coulomb interaction between the

electrons and Vc−c = 1
2

∑
α

∑
β 6=α

Zα·Zβ
|Rα−Rβ| the Coulomb interaction between the nuclei.

It is impossible to solve this problem for many-electron systems without appropriate
approximations. First, it is common to use the Born-Oppenheimer approximation, if
the electron-phonon coupling does not critically affect the electronic structure. Then
the electronic problem is described by the Hamiltonian

He = Te + Ve−c + Ve−e + Vc−c , (2.2)

where the positions Rα of the nuclei enter only as parameters, which are usually chosen
at the equilibrium positions of the lattice. But also this problem is too difficult to solve
without approximations due to the electron-electron interaction. Fortunately, there are
plenty of more or less successful ways to reduce the N -particle problem to an effective
one-(quasi)-particle problem. One of the most prominent ones is the density functional
theory (DFT) of Hohenberg, Kohn and Sham [1, 2], which is implemented in the majority
of ab-initio electronic structure methods. One problem of this highly accurate method
is the required computational time, which remains a challenge even on state-of-the-art
supercomputers.
To reduce this computational time one can use a parametrized tight-binding method,

with the parameters obtained by ab-initio calculations. The tight-binding method de-
scribed in this documentation is able to reproduce the qualitative behaviour of physical
systems, including their magnetic properties.
A convenient feature of these method is that, by virtue of the Slater-Koster theory,

the Slater-Koster parameters depend only on the type of elements in a material, but not
on its geometry. For example there is a possibility to use the tight-binding parameters
of bcc-Fe to describe a Fe monolayer. Incorporating a model for the description of
magnetism (like a Stoner-like-model , section 2.6) a reasonable description of spin-spiral
states in this Fe monolayer can be achieved. At least theoretically the method could
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be as accurate as the best ab-initio methods, if very accurate parameters for a precise
description of the electronic structure are used. In the next sections the theory of the
tight-binding method is described in detail.

2.2 Basics

The solution of the one-electron Schrödinger equation in a special finite set of basis
functions is searched:

H |Ψ〉 = (T + V ) |Ψ〉 = E |Ψ〉 , (2.3)

where T is the one-electron kinetic energy and V is the effective one-electron poten-
tial within a mean-field approximation. As basis functions atomic-orbital-like functions
|n, i, µ〉 are used, where n denotes the Bravais vector Rn, i is the i-th basis atom with
its position τ i in the unit cell and µ stands for the type of orbital. In our code we use s-,
p- and d-orbitals as basis functions, with their well-known angular dependence described
by the spherical harmonics Ylm(Θ, φ).
Using Ritz’s variational principle, one has to solve the following matrix-eigenvalue

equation:
H · c = ES · c , (2.4)

where c is an eigenvector containing the coefficients for the linear expansion of |Ψ〉:

|Ψ〉 =
∑
n,i,µ

cniµ · |n, i, µ〉 , (2.5)

and H and S are the Hamiltonian and overlap matrix in representation of the atomic
orbitals:

Hmjν
niµ = 〈n, i, µ|H |m, j, ν〉 , (2.6)

and Smjν
niµ = 〈n, i, µ|m, j, ν〉 . (2.7)

In this work periodic structures are considered, therefore Bloch’s theorem can be used.
Thus, we can introduce a new basis of Bloch-waves of the following form:

|Φk,i,µ〉 =
1√
N

∑
n

eik·(Rn+τ i) · |n, i, µ〉 , (2.8)

where N ist the number of unit-cells in the chosen super-cell for the periodic boundary
conditions. In the representation of the Bloch-waves the Hamiltonian appears as follows:

Hjν
iµ (k) = 〈Φk,i,µ|H |Φk,j,ν〉 =

∑
n

eik·(Rn+τ j−τ i) ·Hnjν
0iµ . (2.9)

A completely analogous equation defines the matrix elements Sjνiµ (k) of the overlap
matrix:

Sjνiµ (k) = 〈Φk,i,µ|Φk,j,ν〉 =
∑
n

eik·(Rn+τ j−τ i) · Snjν0iµ . (2.10)
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The Bloch-waves are orthogonal for different k-values in the Brillouin-zone:

〈Φk,i,µ|Φk′,j,ν〉 = 0 , if k 6= k′ . (2.11)

Also the Hamiltonian in representation of the Bloch-waves is block-diagonal with respect
to the k-space, i.e.:

〈Φk,i,µ|H |Φk′,j,ν〉 = 0 , if k 6= k′ . (2.12)

In a parametrized tight-binding scheme the matrix elements Hnjν
0iµ and Snjν0iµ are de-

scribed by a parametrization, which will be introduced in the next section.
To conclude, at the heart of the tight-binding theory lies the use of localized basis

functions as basis representation, and in this work we use atomic orbitals for this purpose.

2.3 Parametrization of the matrix elements

In this section the parametrization for the matrix elements Hnjν
0iµ and Snjν0iµ is described.

First, it is important to take a look at the different types of matrix elements which
appear. For the sake of simplicity only the case of one basis atom is considered.

Hnν
0µ =

∫
dr φ∗µ(r) · (T + V ) · φν(r −Rn)

=

∫
dr φ∗µ(r) · (T +

∑
m

vat(r −Rm)) · φν(r −Rn) , (2.13)

where vat(r−Rm) is the atomic potential of the atom in the m-th unit-cell and φµ(r) =
〈r|n, µ〉. The following types of integrals can be distinguished.

1-center-integrals: ∫
dr φ∗µ(r) · vat(r) · φν(r) (2.14)

µ = ν : typical on-site atomic orbital energies, εµ
µ 6= ν : small contribution if overlap 〈φµ|φν〉 6= 0

2-center-integrals:

(i)

∫
dr φ∗µ(r) ·

∑
n6=0

vat(r −Rn) · φν(r) (2.15)

µ = ν : contribution to the on-site energies due to existence of other atoms
µ 6= ν : “hopping-element” on-site from ν → µ due to existence of other atoms

(ii)

∫
dr φ∗µ(r) · vat(r) · φν(r −R) , R 6= 0 (2.16)

13
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px py pz

dxy dxz dyz dx2−y2 dz2

s

Figure 2.1: Atomic s,p,d orbitals | modified fig. from [15]

typical hopping elements, which describe the electronic transition from φν(r − R) to
φµ(r) ; usually only the valence electrons are allowed to hop.

3-center-integrals:∫
dr φ∗µ(r) · vat(r −R) · φν(r −R′) , R 6= 0 6= R′ 6= R (2.17)

These integrals are very small for atomic orbitals φµ(r). Therefore they are usually ne-
glected in theoretical tight-binding descriptions. Also in this work they will be neglected
in the determination of the tight-binding parameters.
The matrix elements of the kinetic energy T with the atomic orbitals are of the same

form as the 1-center-integrals and 2-center-integrals. Therefore the on-site energies and
hopping elements contain also the kinetic energy contribution.

Summing up, one needs a parametrization for the on-site elements and hopping inte-
grals. A common parametrization for the hopping elements is the so-called Slater-Koster
parametrization [18]. The hopping elements of the type 2.16 are related by symmetry
operations which can be exploited to parametrize the hopping elements with a minimal
set of parameters, the Slater-Koster parameters, which are described in this section.
Each hopping element depends on the distance and the direction of the bonding be-
tween the corresponding atoms. Therefore the parametrization of the hopping elements
consists of a angular-dependent description via the Slater-Koster transformations and a
distance-dependent parametrization by Mehl et al. [3, 4].

Slater-Koster parameters The angular dependence of the basis functions φν(r −R)
is described by s-, p- and d-orbitals (see fig. 2.1). Essentially these orbitals are linear
combinations of the (complex) spherical harmonics. Therefore, the hopping elements
consist of the following matrix elements of H with the (complex) spherical harmonic
functions |l,m〉:

Ṽ
(i→j)
ll′m = 〈n, i, l,m|H |n′, j, l′,m〉 (m = m′) , (2.18)
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2.3 Parametrization of the matrix elements Theory

where l, l′ label the angular-momentum quantum number of the orbitals and m the
magnetic quantum number of the orbitals. The magnetic quantum numbers m and m′
of the atomic orbitals have to be the same due to selection rules. Neglecting the 3-center-
integrals, the hopping elements of the Hamiltonian can be described with only 10 types of
Slater-Koster parameters, which are shown in fig. 2.2. The Slater-Koster parameters are
linear-combinations of the matrix elements 2.18, e.g. the Slater-Koster parameter Vspσ is
Ṽ010 or Vppπ is 1

2
(Ṽ11−1 + Ṽ111) (for more information see [19]). From now on the Slater-

Koster parameters are denoted as Vll′m, where l,l′ are the angular momentum quantum
numbers in orbital notation (i.e. s,p,d) and m stands for a σ-, π- or δ-like symmetry of
the bonding. As one can see in figure 2.2 these 10 parameters are sufficient to describe
a system with one atom per unit-cell (i = j) and where only nearest-neighbour coupling
along the z-axis as bonding direction is considered. Then the hopping elements of the
Hamiltonian would take the following form in the (s, px, py, pz, dxy, dxz, dyz, dx2−y2 , dz2)-
representation:

H(R · ez) =



Vssσ 0 0 Vspσ 0 0 0 0 Vsdσ
0 Vppπ 0 0 0 0 Vpdπ 0 0
0 0 Vppπ 0 0 Vpdπ 0 0 0

−Vspσ 0 0 Vppσ 0 0 0 0 Vpdσ
0 0 0 0 Vddδ 0 0 0 0
0 0 −Vpdπ 0 0 Vddπ 0 0 0
0 −Vpdπ 0 0 0 0 Vddπ 0 0
0 0 0 0 0 0 0 Vddδ 0
Vsdσ 0 0 −Vpdσ 0 0 0 0 Vddσ


, (2.19)

where [H ]νµ(R · ez) = Hmjν
niµ with Rn −Rm = R · ez (Rn 6= Rm) the nearest-neighbour

bonding direction and i = j.
In general one needs the hopping elements for arbitrary distances and arbitrary di-

rections of the bondings. Of course the hopping elements and also the Slater-Koster
parameters depend on the chemical type of the basis atoms.

Angular-dependent parametrization Due to the angular dependence of spherical har-
monic functions, all hopping elements along an arbitrary bonding direction R can be
expressed as linear combinations of 10 Slater-Koster parameters. One has to rotate the
matrix H(R · ez) containing the hopping elements for a bonding direction along the
z-axis into the matrix with the hopping elements along the R-direction:

H(R) = U † ·H(R · ez) ·U , (2.20)

where U is the unitary matrix, which changes the representation of the s-, p- and d-
orbitals with the z-axis as quantization axis into the representation with the R-axis
as quantization axis. The matrix U depends on the directional cosines of the bonding
vector R [19]. These transformations are also called Slater-Koster transformations.
The explicit form of all these transformations can be found in the table A.1 in appendix

A. One simple example for a hopping element between two atoms with a s- and pz-orbital
is shown in figure 2.3.
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Theory 2.3 Parametrization of the matrix elements

Figure 2.2: All 10 Slater-Koster parameters. σ, π and δ describe the symmetry with re-
spect to the bonding axis and they correspond to magnetic quantum numbers
m of the angular momentum. | fig. from [15]
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2.3 Parametrization of the matrix elements Theory

= +
Θ Θ Θ

!R !R!R

Hpz
s (!R) cosΘ · Vspσ sinΘ · Vspπ= +

= 0

z

Figure 2.3: Slater-Koster transformation for s and pz orbital. Hpz
s is a linear combination

of the Vspσ-case and the Vspπ-case, which is zero due to symmetry.

Making use of the Slater-Koster transformations hopping parameters along an arbi-
trary direction can be expressed by 10 Slater-Koster parameters. Of course the strength
of the hopping depends very strongly on the distance between the orbitals. Hence, one
needs also a distance-dependent parametrization for the Slater-Koster parameters.

Distance-dependent parametrization There are many distance parametrizations for
the Slater-Koster parameters [20, 21, 22, 23]. In this work a distance parametrization
by Mehl et al. is used [3]. In this parametrization the distance dependence of each
Slater-Koster parameter Vll′m(R) is described by 4 other parameters all′m, bll′m, cll′m and
dll′m:

V
(i→j)
ll′m = (a

(i→j)
ll′m + b

(i→j)
ll′m ·R + c

(i→j)
ll′m ·R2)︸ ︷︷ ︸

polynomial part

· e−(d
(i→j)
ll′m )2·R︸ ︷︷ ︸

exp.part

·fc(R) , (2.21)

where

fc(R) =

{ 1
1+exp[(R−Rc+5Lc)/Lc]

, R ≤ Rc

0 , R > Rc
(2.22)

is a Fermi-Dirac-like cutoff-function with Rc as the cutoff-radius and Lc as the broad-
ening of the cutoff-function. The distances R are in atomic units and the Slater-Koster
parameters are in units of Rydberg in the Mehl et al. parametrization.
In figure 2.4 one can see the distance-dependent behaviour of some of the Slater-

Koster parameters for Fe-Fe hopping elements. The distance parametrization could lead
to unphysical Slater-Koster parameters in the case of too small distances. An analogous
parametrization is used for the overlap matrix elements.1

Besides the hopping elements also a parametrization for the on-site energies is needed,
which is of the following form in the Mehl et al. parametrization:

εiµ = (αiµ + βiµ · ρ2/3
i + γiµ · ρ4/3

i + χiµ · ρ2
i ) (2.23)

1When adopting the parametrization scheme of Mehl et al. one should take care of the overlap matrix
elements, because there are two slightly different parametrizations [5, 6].
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Figure 2.4: Distance-dependence of selected Fe-Fe hopping elements. While the distance
parametrization provides reasonable Fe-Fe hopping elements for distances
≥ 2 Å, it is not able to reproduce the behaviour for smaller distances.

with
ρi =

∑
j 6=i

e−λ
2
j ·Rij · fc(Rij) (2.24)

as local atomic density at atom i with additional parameters λj , which depends on the
chemical type of the atom j, and Rij = |Ri −Rj| the distance between atom i and j.

In total 80 parameters are needed to describe the hopping elements between chemi-
cally equivalent atoms and another 13 parameters for the on-site elements. To describe
a binary system, consisting of two types of basis atoms A and B, 93 parameters for each
bonding type A− A and B − B are needed. In principle also 112 parameters would be
necessary to describe A− B-bondings (80 parameters for the Slater-Koster parameters
+ 4 additional for each Vpsσ, Vdpσ, Vdpπ and Vdsσ), but unfortunately there are almost no
provided parameters for binary systems by Mehl et al. Therefore, the following ansatz
is used to describe the Slater-Koster parameters for the A−B-hopping:

V A−B
ll′m =

1

2
(V A−A

ll′m + V B−B
ll′m ) . (2.25)

Although these parameters are a rough approximations, it can be shown that one can
obtain reasonable results for Fe-Pt systems [16].
The parameter sets of Mehl et al. are fitted to results of ab-initio bandstructures of

the corresponding equilibrium bulk-geometry. Therefore, these parameters provide a
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2.4 Electronic structure properties Theory

proper description of the bulk structure, but are not as accurate for binary systems and
especially systems, whose geometry is very different compared to the bulk geometry.
This problem is known as transferability problem [24].
It should be mentioned that the hopping parameters are not spin-dependent, therefore

an additional model Hamiltonian is needed to describe magnetism (see section 2.6). Also
only valence electrons have the possibility to hop, whereas the energy of the core electrons
is contained in the on-site elements.

2.4 Electronic structure properties

The parametrization by Mehl et al. provides a description of the Hamiltonian Hjν
iµ (k)

and the overlap matrix Sjνiµ (k). After solving the eigenvalue-equation

H(k) ·Ψn(k) = εn(k)S(k) ·Ψn(k) (2.26)

one can calculate the Fermi energy, the charges and the density of states (DOS) using
the eigenenergies εn(k) and the eigenvectors Ψn(k). The band index n numbers the
different eigenenergies and eigenvectors.

2.4.1 Fermi energy

The Fermi energy εF is determined via the equation

Ne− =
∑
k,n

f(εk,n, εF ) , (2.27)

where
f(ε, εF ) =

1

exp[β · (ε− εF )] + 1
(2.28)

is the Fermi-Dirac distribution function for the electrons and Ne− is the total number of
valence electrons in the system. A thermal smearing β−1 = kB ·T is introduced to make
the calculation of the Fermi energy numerically more stable.

2.4.2 Density of states (DOS)

The DOS is defined as
D(ε) =

∑
k,n

δ(ε− εk,n) . (2.29)

In this work a Lorentzian-broadening function is used instead of the δ-function:

D(ε) =
∑
k,n

1

π
· Γ

Γ2 + (ε− εk,n)2
, (2.30)
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Theory 2.4 Electronic structure properties

where Γ is the width of the Lorentzian-function. One has to be very careful in choosing
a reasonable Γ: While a very large value smears out fine structure of the DOS, a too
small width leads to many sharp peaks in the DOS.
Besides the (total) DOS, it is also enlightening to take a look at the partial DOS, such

as atom- and orbital-resolved DOS. The partial DOS of the j-th basis atom and ν-th
orbital is calculated as follows:

Djν(ε) =
∑
k,n

δ(ε− εk,n) · (Ψ†k,n)jν · (S(k) ·Ψk,n)jν . (2.31)

If an orthogonal set of basis functions would be used, the eigenvectors would be or-
thonormal: Ψ†n ·Ψm = δnm ∀n,m. In the case of a non-orthogonal set of basis functions,
it can be shown that

Ψ†n · S ·Ψm = δnm , ∀n,m . (2.32)

With eq. 2.32 follows:
D(ε) =

∑
j,ν

Djν(ε) . (2.33)

2.4.3 Band energy

The band energy is defined as follows:

Eband =
∑
k,n

εk,n · f(εk,n, εF ) . (2.34)

This is a contribution to the total energy expression (see section 2.5/2.6), where also
double-counting terms enter.

2.4.4 Charges

In the following sections the self-consistency of the tight-binding scheme is explained in
detail. One fundamental point of the self-consistent cycle is the determination of the
atomic charges. The charge calculation for a non-magnetic system is shown here. The
charge of the j-th atom in its µ-th orbital displays as follows:

nMull
jν = 2 ·

∑
k,n

f(εk,n, εF ) · (Ψ†k,n)jν · (S(k) ·Ψk,n)jν , (2.35)

where the factor 2 arises due to the spin-degeneracy in a non-magnetic system. To be
precise, the above charges are the so-called Mulliken charges. They fulfil the normaliza-
tion condition ∑

j,ν

nMull
jν = Ne− , (2.36)

whereas the so-called net charges

nnet
jν = 2 ·

∑
k,n

f(εk,n, εF ) · (Ψ†k,n)jν · (Ψk,n)jν , (2.37)
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D(ε)

εε̄ εF

Figure 2.5: Charge transfer to the surface-atoms in a simple DOS model. Red and blue
filling in the figure represents the filling of the electrons in the bulk DOS
and surface DOS; the area under the two curves and the Fermi energy is the
same, therefore there is more charge on the surface-atom

do not fulfil eq. 2.36. Net charges and Mulliken charges are identical for an orthogonal
set of basis functions.

2.5 Local charge neutrality

In the parametrized tight-binding scheme described in section 2.3 the on-site energies
are fixed. This could lead to problems in calculating the charges for systems of low
symmetry such as slab systems or systems with non-equivalent basis atoms. One can
obtain non-physical results due to large charge transfers and a constraint for the charge
becomes necessary. The reason for the occurrence of these large charge transfers can be
understood in a simple DOS model for a thick slab system. In the following the local
(atom-specific) DOS of a surface-atom and of an atom in the bulk-like middle of the slab
system are compared. For the sake of simplicity the on-site energy of the surface atom
and bulk atom is fixed to the same value and the local DOS is symmetric with respect to
its center value ε. The width of the local DOS depends on the hopping elements and the
number of neighbours. Typically the width of the DOS for the surface atom is smaller
than for the bulk-atom. In figure 2.5 the charge transfer to the surface atoms is clearly
visible. To prevent very large charge transfers, the following ansatz for a constraint is
used:

ELCN =
ULCN

2
·
∑
i

(nMull
i − n0

i )
2 , (2.38)
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Theory 2.5 Local charge neutrality

where nMull
i is the Mulliken charge on the i-th atom, n0

i is the (desired) bulk-value of
the Mulliken charge and ULCN is the local charge neutrality constant. For simplicity
the following derivation is done only for an orthogonal set of basis functions, therefore
ni := nMull

i = nneti . To determine the form of Hamiltonian, which corresponds to the
above energy ELCN, one should minimize the following Lagrange function:

F = E0
tot +

ULCN

2
·
∑
i

(ni − n0
i )

2 +
∑
k,n

αk,n · [|Ψk,n|2 − 1] , (2.39)

where
E0

tot =
∑
k,n

f(εk,n, εF ) ·
∑
µ,ν

∑
i,j

(Ψ†k,n)iµ · (Ψk,n)jν · [H0]jνiµ (2.40)

is the total energy without the constraints and the remaining two terms are the con-
straints. The first constraint is the local charge neutrality term (see eq. 2.38) and the
other one takes into account the normalization of the wave functions.

F =
∑
k,n

f(εk,n, εF )
∑
i,j

∑
µ,ν

(Ψ†k,n)iµ · (Ψk,n)jν · [H0]jνiµ +

ULCN

2
·
∑
i

[∑
k,n,µ

|(Ψk,n)iµ|2 · f(εk,n, εF )− n0
i

]2

+
∑
k,n

αk,n ·
[∑
i,µ

|(Ψk,n)iµ|2 − 1

]

⇒ 1

f(εk,n, εF )
· ∂F

∂(Ψ†k,n)iµ

=
∑
jν

[H0]jνiµ · (Ψk,n)jν + ULCN · (ni − n0
i ) · (Ψk,n)iµ + α̃k,n · (Ψk,n)iµ = 0

The Lagrange parameters −α̃k,n = − αk,n
f(εk,n,εF )

can be identified as bandenergies εk,n of
an eigenvalue problem for the Hamiltonian:

Hjν
iµ = [H0]jνiµ + ULCN · (ni − n0

i ) · δijδµν . (2.41)

What is the physics behind the local charge neutrality constraint?
The constraint for the charge neutrality shifts the on-site energies depending on

(ni − n0
i ). If (ni − n0

i ) < 0 the on-site energy of the corresponding atom is decreased,
so that the charge on this atom increases (see figure 2.5). The parameter ULCN in the
charge constraint has to be chosen large enough to assure ni ≈ n0

i . Theoretically ni is
equal n0

i for ULCN → ∞, but of course this can not be used numerically. A good value
for preventing large charge transfers is ULCN = 5 eV.

With the local charge neutrality term the Hamiltonian depends on the charges and the
charges itself are calculated from the eigenvectors and eigenenergies of the Hamiltonian.
This leads to the possibility to calculate the charges of the system in a self-consistent
scheme. In figure 2.6 the self-consistent scheme is displayed. Besides the above linear
mixing, which converges very slowly, but is very stable, there is also the possibility to
use Broyden mixing [25] for faster convergence.
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Figure 2.6: Self-consistent cycle via the local charge neutrality.

For a system with equivalent atoms the Hamiltonian is fixed to the parametrized
Hamiltonian, which is described in section 2.3. Therefore the self-consistent charge cal-
culation yields no advantages for homogeneous systems. But for systems with inequiva-
lent atoms, the on-site energies are shifted due to the local charge neutrality constraint
until the system reaches a stable equilibrium with respect to the charges.

In the self-consistent scheme with the local charge neutrality, the band energy 2.34
is not the whole part of the total energy and there is a double counting part, which has
to be taken into account. This double counting term is not derived in the following, but
in the section on the Stoner-model (see section 2.6) an additional double counting term
is introduced, which derivation (eqs. 2.55-2.58) shows how one can derive eq. 2.43. The
total energy has the following form:

Etot = Eband −
ULCN

2
·
∑
i

(n2
i − (n0

i )
2) . (2.42)

For systems with identical basis atoms, n0
i = n0, the double counting can be rewritten

as
ULCN

2
·
∑
i

(ni − n0
i )

2 (2.43)

using charge conservation
∑

i ni =
∑

i n0.
All equations throughout this section are valid only for an orthogonal set of basis

functions. For a non-orthogonal set of basis functions the charge ni in the equations
2.41-2.43 has to be replaced by the Mulliken charge nMull

i and the additional charge
constraint in the Hamiltonian has the following form:

ULCN

2
·
(
(nMull

i − n0
i ) + (nMull

j − n0
j)
)
· Sjνiµ . (2.44)

The structure of the double counting term remains unchanged.
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εF

D(ε)

ε

I

2
· md

I

2
· md

Figure 2.7: Stoner model in a simple DOS picture. The dashed lines display the DOS
of the non-magnetic case. Due to an exchange splitting introduced by the
Stoner model the DOS is shifted depending on its spin. The band filling,
represented by the red colour, is different in the spin channels. Therefore the
system develops a magnetic moment.

2.6 Stoner model

As mentioned in section 2.3 the parametrization for the hopping elements does not in-
clude magnetism, because the hopping elements are spin independent, i.e. V ↑→↑ll′m = V ↓→↓ll′m

and V ↑→↓ll′m = 0. In this work a simple Stoner model is applied to model magnetism. Here,
an exchange splitting between the electronic majority-bands (↑-bands) and minority-
bands (↓-bands) is introduced in the same way as in the original Stoner model [7, 8].
The exchange splitting depends on the magnetic d-moment of the corresponding atom
and a Stoner parameter I:

εexc
iµ = Iiµ ·md

i . (2.45)

The calculation of the magnetic moments in the tight-binding framework is explained
later. At the moment it is enough to know, that md

i = N↑i,d−N↓i,d for collinear magnets,
where Nσ

i,d (σ =↑ , ↓) is the number of electrons in the ↑- , ↓ -d-bands. In figure 2.7 one
can see the connection between the exchange splitting and the filling of ↑- and ↓ -bands
via a simple DOS consideration.
For the case of collinear magnetism the Stoner-part of the Hamiltonian in spin-space

has the following form:

[Hmag]jνiµ =

(
− Iiµ

2
·md

i 0

0
Iiµ
2
·md

i

)
· δijδµν . (2.46)

Therefore the Stoner-part modifies exclusively the on-site energies of the system. In the
Stoner-part only the magnetic d-moments are used to determine the exchange splitting,
because in 3d-transition metals (like Fe) the magnetism is originated mainly from the
3d-electrons. This can be shown again with the help of a simple DOS-model and the
Stoner criterion: I ·D(εF ) > 1 for ferromagnetic materials, where D(εF ) is the DOS at
the Fermi energy.
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Figure 2.8: Simplified DOS of a 3d-transition metal. The partial DOS in the s-states
at the Fermi energy is much lower than the partial DOS in the d-states.
Therefore the d-states dominate the magnetic behaviour.

Essential for the formation of ferromagnetism is the density of states at the Fermi
energy. In figure 2.8 the simplified DOS of a 3d-transition metal is shown. Typically
for transition metals the DOS at the Fermi energy consists mainly of the partial DOS
of the d-orbitals. As a consequence, a small exchange splitting in the d-states lead
to large magnetic d-moments, so that |md| � |ms|,|mp|. Using only the d-moments
to determine the exchange splitting simplifies the below described self-consistent tight-
binding calculation without loosing much accuracy.

The Hamiltonian depends on the magnetic d-moments, which are calculated from the
eigenenergies and eigenvectors of the Hamiltonian. Now one can calculate the magnetic
moments in a self-consistent scheme until convergence is reached. In figure 2.9 the self-
consistent scheme, together with the local charge neutrality described in section 2.5,
is displayed. The local charge neutrality part shifts the on-site energies of the atoms
until the charges are converged as described in detail in section 2.5. The Stoner-model
modifies also the on-site energies of the system, but now an exchange splitting between
the on-site energies of the ↑- and ↓-bands is introduced. This splitting changes during
the self-consistent scheme until the magnetic moments are converged. In the converged
case the system has reached a stable equilibrium with respect to the charges and the
magnetic moments.

Now one should take a look, how these magnetic moments can be calculated. The
magnetic moments and also the (net-)charges can be determined with the help of the
density matrix ρ. The density matrix for the i-th atom and µ-th orbital has the following
form in spin-space with the z-axis as quantization axis:

ρ
iµ

=

(
ρ↑↑iµ ρ↑↓iµ
ρ↓↑iµ ρ↓↓iµ

)
, (2.47)
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Figure 2.9: Self-consistent cycle via the Stoner part and the local charge neutrality

with
ρσσ

′

iµ =
∑
k,n

f(εk,n, εF ) · (Ψ†k,n)σiµ · (Ψk,n)σ
′

iµ . (2.48)

The (net-)charge of the i-th atom and µ-th orbital is the trace of the density matrix:

nnet
iµ = tr[ρ

iµ
] = ρ↑↑iµ + ρ↓↓iµ . (2.49)

In the special case of a non-magnetic system one obtains the result 2.37. The magnetic
moment of the i-th atom and µ-th orbital can be determined for all the three spatial
directions as follows:

(miµ)x = 2 Re[ρ↑↓iµ ] (2.50)

(miµ)y = 2 Im[ρ↑↓iµ ] (2.51)

(miµ)z = ρ↑↑iµ − ρ↓↓iµ (2.52)

These equations can be directly derived from the definition

[miµ]α =
∑
k,n

f(εk,n, εF ) ·
∑
σσ′

(Ψ†k,n)σiµ · (Ψk,n)σ
′

iµ · [σα]σσ′

= tr[ρ†
iµ
· σα] α = x, y, z , (2.53)

where σα are the well-known Pauli-matrices. Similarly to the charges there is a distinc-
tion between magnetic net moments and magnetic Mulliken moments. With eqs. 2.50-
2.52 the magnetic net moments are calculated, whereas the magnetic Mulliken moments
can be determined by

[ρσσ
′

iµ ]Mull =
∑
k,n

f(εk,n, εF ) · (Ψ†k,n)σiµ · (S(k) ·Ψk,n)σ
′

iµ . (2.54)
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Normally, one should use here the Mulliken moments. However, using the net moments
instead of the Mulliken moments does not make a big difference in the converged results
and one could stick to the simpler net moments.
We close this section with a derivation of an expression for the exchange energy con-

tribution to the total energy as promised in section 2.5. The total energy Etot is not
any more only the band energy Eband (see eq. 2.34), there is a double counting term,
which has to be considered. One can show [26], that the total energy of the Hamiltonian
H0 +Hmag is

Etot = E0
tot −

1

4

∑
i,µ

Ii,µ ·mµ
i ·md

i , (2.55)

where
E0

tot =
∑
k,n

f(εk,n, εF ) ·
∑
µ,ν

∑
i,j

∑
σ,σ′

(Ψ†k,n)σiµ · (Ψk,n)σ
′

jν · [H0]jνσ
′

iµσ (2.56)

is the total energy of the non-magnetic system. Easily accessible is the band energy,
which is calculated in the following:

Eband =
∑
k,n

f(εk,n, εF ) · εk,n

=
∑
k,n

f(εk,n, εF ) ·
∑
µ,ν

∑
i,j

∑
σ,σ′

(Ψ†k,n)σiµ · (Ψk,n)σ
′

jν ·(
[H0]jνσ

′

iµσ −
Ii,µ
2
· σ ·md

i · δσσ′δijδµν
)

= E0
tot −

∑
k,n

f(εk,n, εF )
∑
i,µ,σ

|(Ψk,n)σiµ|2 ·
Ii,µ
2
·md

i · σ

= E0
tot −

∑
i,µ

Ii,µ
2
·md

i ·mµ
i . (2.57)

If one compares eq. 2.55 with eq. 2.57, one can determine the double counting:

Etot = Eband +
∑
i

Ii,µ
4
·mµ

i ·md
i . (2.58)

2.7 Spin-orbit coupling

The spin-orbit coupling (SOC) is a relativistic effect with the energy scale well below
0.5 eV. A very important aspect of SOC is the symmetry breaking it causes in a ferromag-
net. Many interesting effects like the Rashba-splitting [27] or the Dzyaloshinskii-Moriya
interaction (DMI) [28, 29] are based on SOC.
Due to the relativistic nature of SOC one has to examine the Dirac equation to

understand its origin. In a non-relativistic expansion of the Dirac equation the following
expression for SOC can be derived [30]:

HSOC ∝ (∇V (r)× p) · σ , (2.59)
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where σ is the vector containing the Pauli-matrices, V (r) is the electrostatic potential
and p is the momentum of the electron. In solids the electric field, i.e. ∇V (r), is
strongest close to the nucleus, where the potential is almost spherical. Therefore using
a spherical potential V (r) = V (r) is a good approximation and the expression 2.59 can
be rewritten:

HSOC = ξ(r) ·L · S , (2.60)

with L = r × p the angular momentum, S = h̄
2
· σ the spin of the electron and the

radial-dependent function ξ(r) = 1
2m2c2

· 1
r
· ∂V (r)

∂r
.

In representation of the atomic orbitals, using 〈r|iµ〉 = Riµ(r) · Y (i)
µ (Θ, φ) with Riµ(r)

a radial function and Y
(i)
µ (Θ, φ) a spherical harmonic function, the expression has the

following form:

(HSOC)jνσ
′

iµσ = 〈i, µ, σ| ξ(r) ·L · S |j, ν, σ′〉

=
h̄

2

[∫
dr · r2ξ(r)R∗iµ(r) ·Rjν(r)

]
︸ ︷︷ ︸

ξiµ,jν

·

 2π∫
0

π∫
0

dΘdφ sin Θ · [Y (i)
µ ]∗(Θ, φ) · Y (j)

ν (Θ, φ) · 〈σ|L · σ |σ′〉


= ξiµ,jν · 〈µσ|L · σ |νσ′〉 .

The function ξ(r) is usually localized near r = 0, therefore ξiµ,jν ≈ δij ξµν is a reasonable
approximation. The representation of the angular moment L in atomic orbitals, i.e. Lνµ =
〈µ|L |ν〉, can be found in the appendix in A.1. Important to notice is that 〈µ|L |ν〉 is
block-diagonal with respect to s-,p- and d-orbitals. Therefore only three SOC-parameters
per basis atom are necessary for describing SOC in tight-binding:

• ξi,p, SOC-parameter of p-orbitals

• ξi,d, SOC-parameter of d-orbitals

• ξi,f , SOC-parameter of f -orbitals

There is no contribution to SOC from the s-orbital due to l = 0. In our code the f -
orbitals are not implemented, but usually they have a large contribution to SOC for the
rare-earth metals.

Combining these results leads to the following expression for SOC in representation
of the atomic orbitals in spin-representation with the z-axis as quantization axis:

(HSOC)jνiµ = ξiµ ·
(

(Lz)
ν
µ (Lx)

ν
µ − i · (Ly)νµ

(Lx)
ν
µ + i · (Ly)νµ −(Lz)

ν
µ

)
· δij , (2.61)

where (Lα)νµ are the aforementioned angular momentum components in atomic orbital
representation (see A.1).
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Figure 2.10: Magnetic moment in spherical coordinate representation.

Switching on SOC leads to non-vanishing expectation values for the orbital moments
〈Li〉. The following equation is used to determine the orbital moment of the i-th atom:

〈Li〉 =
∑
k,n

f(εk,n, εF ) ·
∑
µ,ν,σ

(Ψ†k,n)σiµ · (Ψk,n)σiν ·Lνµ . (2.62)

The above moments are net moments. For a determination of the orbital Mulliken
moments one has to include the overlap matrix as in eq. 2.54:

〈LMull
i 〉 =

∑
k,n

f(εk,n, εF ) ·
∑
µ,ν,σ

(Ψ†k,n)σiµ · (S(k) ·Ψk,n)σiν ·Lνµ . (2.63)

2.8 Non-collinear magnetism

2.8.1 Non-collinear magnetism in the unit-cell

Many interesting phenomena appear due to non-collinear magnetism, for example the
Néel-state in magnetic frustrated systems [31] or spin-spiral ground states in Cr/W(110)
[32], 2Fe/W(110) [33] or even Fe(110)-monolayers [34]. Implementing non-collinear mag-
netism in the tight-binding scheme is rather straightforward. In figure 2.10 a magnetic
moment is pointing in an arbitrary direction, which is defined by the angles Θ and φ in
the spherical coordinates representation:

m = |m| ·

cosφ sin Θ
sinφ sin Θ

cos Θ

 . (2.64)

We proceed by defining two frames of reference. The global frame is the representation
of the spins with the z-axis as quantization axis, whereas the local frame is the represen-
tation with the direction of m as quantization axis. The following spin-rotation matrix

U rotates the spin up state |↑〉 =

(
1
0

)
of the global frame into the spin up state |↑〉m of
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the local frame [35]:

U(Θ, φ) =

(
e−iφ

2 · cos(Θ
2

) −e−iφ
2 · sin(Θ

2
)

eiφ
2 · sin(Θ

2
) eiφ

2 · cos(Θ
2

)

)
. (2.65)

Therefore it follows:

|↑〉m = U(Θ, φ) |↑〉 = e−iφ
2 · cos

(
Θ

2

)
|↑〉+ eiφ

2 · sin
(

Θ

2

)
|↓〉 . (2.66)

The magnetic part of the Hamiltonian has the following form in its local frame (see
eq. 2.46):

[Hmag]jνiµ =

(
− Iiµ

2
·md

i 0

0
Iiµ
2
·md

i

)
· δijδµν

= −Iiµ
2
·md

i · σ · δijδµν . (2.67)

We will show that this expression is, as expected, invariant under spin-rotations. In the
special case of md

i = md
i · ez the local frame and global frame are the same. [Hmag]jνiµ

can be transformed into the global frame using the transformation matrix U :

[Hglobal
mag ]iµiµ = U(Θi, φi) · [Hmag]iµiµ · U †(Θi, φi) , (2.68)

where Θi and φi are the angles defining the direction of the magnetic momentmd
i . This

leads to the following expression:

[Hglobal
mag ]iµiµ =

Iiµ
2
·
(
−md

i · cos Θi −md
i · sin Θi · e−iφi

−md
i · sin Θi · eiφi md

i · cos Θi

)
=

Iiµ
2
·
(

−(md
i )z −[(md

i )x − i · (md
i )y]

−[(md
i )x + i · (md

i )y] (md
i )z

)
= −Iiµ

2
·md

i · σ . (2.69)

The components of the magnetic d-moment (md
i )α are determined via equations 2.50-

2.52. Treating non-collinear magnetism using equation 2.68 increases the number of
variables in the self-consistent scheme (figure 2.9) by a factor of two. For the collinear
case one component of the d-moments [md

i ]α is sufficient, whereas the complete vector
md

i is necessary in the non-collinear case.
Performing self-consistent calculations for a non-collinear case makes it necessary to

use another constraint, in addition to the local charge neutrality term, in order to pin
the directions of the magnetic moments. Following a scheme of R. Gebauer [36], one
should minimize the following generalized total energy:

Etot[n(r),m(r)] = E0
tot[n(r),m(r)] + λ ·

∫
dr (m(r)− m̄(r))2 , (2.70)
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Figure 2.11: Magnetic field Bcon in the constraint.

where E0
tot[n(r),m(r)] is the total energy without the constraint and λ ·

∫
dr (m(r) −

m̄(r))2, with m̄(r) the predefined magnetic moment, a constraint for the direction of
the magnetic moment. In [36] it is shown, that for our purposes the following constraint
is able to pin the Θ-angle of the moments up to a small region around the predefined
direction:

Econ = λ ·
∑
i

(
arccos

(
[md

i ]z
|md

i |

)
−Θi

)2

. (2.71)

The Hamiltonian then has to be complemented with the following expression:

[Hcon]jνiµ = −σ ·Bcon(md
i ) · δijδµν , (2.72)

whereBcon is a magnetic field, which is perpendicular tomd
i (figure 2.11) pointing in the

direction of the chosen angle. The strength of Bcon depends on the difference between
the chosen angle Θi and the current angle arccos

(
[md

i ]z
|md

i |

)
:

Bcon = −
2λ ·

(
arccos

(
[md

i ]z
|md

i |

)
−Θi

)
(

1−
(

[md
i ]z

|md
i |

)2
)1/2

· |md
i |3
·

 [md
i ]z · [md

i ]x
[md

i ]z · [md
i ]y

−[md
i ]

2
x − [md

i ]
2
y

 . (2.73)

The constraint does not fix the absolute value of the magnetic moments due to the fact
that Bcon is perpendicular to md

i .

2.8.2 Spin-spirals

Some materials like Cr/W(110) do not show a ferromagnetic ground state, but rather
a spin-spiral structure [32]. A spin-spiral is a periodic magnetic structure, in which the
directions of the spins are determined as follows:

Si =

cos(q ·Rn) · sin Θ
sin(q ·Rn) · sin Θ

cos Θ

 . (2.74)
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Figure 2.12: Four examples of spin-spirals with spin rotation axis perpendicular (upper
two) and parallel (lower two) to the spin-spiral vector q. For each case two
spirals with cone-angles of Θ = π

2
and Θ = π

4
are shown.

The cone-angle Θ is the angle between the spins and the rotation axis of the spin-spiral.
In equation 2.74 the rotation axis is defined along the z-axis. The rotation angle of
the spin-spiral is defined via the spiral vector q, which also defines the direction along
which the spins are rotated. The rotation angle of the spin at position Rn is defined as
φn = q ·Rn. In figure 2.12 different spin-spirals with cone-angles Θ and spiral-vectors q
are displayed.
There are two approaches how to treat spin-spiral systems computationally. One

possibility is to describe spin-spirals with rational |q|-values in a super-cell using the
transformation 2.68 for Hmag (see picture 2.13a). A big disadvantage of this method is
the huge amount of computational time needed in particular for small q-values. However,
within this scheme the implementation of SOC can be done in a straightforward way
(see section 2.6).
Another possibility to describe spin-spirals in periodic systems is via the generalized

Bloch theorem (see figure 2.13b , [9, 10, 11]). The Bloch theorem according to eq. 2.9 is
not any more valid for a spin-spiral due to the non-periodicity of the potential. But if
one combines a lattice-translation with the corresponding spin-rotation, each unit-cell is
equivalent. Therefore a generalized Bloch theorem remains valid and can be expressed
as:

U(q ·Rn) · T (Rn) ·
(

Φ↑(k, r)
Φ↓(k, r)

)
= exp(ik · r) ·

(
exp(− i

2
q ·Rn) · Φ↑(k, r)

exp( i
2
q ·Rn) · Φ↓(k, r)

)
, (2.75)

where T (Rn) is a lattice-translation operator, U(q ·Rn) is a spin-rotation matrix with
a rotation angle φn = q ·Rn and the z-axis as rotation axis, and Φσ(k, r) (σ =↑, ↓) is
the σ-component of the Bloch-wave Φ(k, r).
As in eq. 2.8 one can construct Bloch-waves, which satisfy the generalized Bloch
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a : unit-cell 

(a) 

(b) 

!q

Figure 2.13: Different possibilities of treating spin-spirals: (a) large super-cell for com-
mensurate q-values, (b) generalized Bloch theorem.

theorem:

|Φ↑iµ(k)〉 =
1√
N
·
∑
n

eik·(Rn+τ i) · |n, i, µ〉 ·
(

e−
i
2
q·(Rn+τ i)

0

)
(2.76)

|Φ↓iµ(k)〉 =
1√
N
·
∑
n

eik·(Rn+τ i) · |n, i, µ〉 ·
(

0

e
i
2
q·(Rn+τ i)

)
. (2.77)

In representation of these Bloch-waves one obtains the following Hamiltonian Hjν
iµ (k):

〈Φσ
iµ|H |Φσ′

jν〉 = [Hjν
iµ (k, q)]σσ

′
=
∑
n

eik·(Rn+τ j−τ i) · [sji (q ·Rn)]σσ
′ ·Hnjν

0iµ , (2.78)

where [sji (q ·Rn)]σσ
′ are phase-factors for the σσ′-components of the Hamiltonian:

(sji (q ·Rn))↑↑ = e−i q
2
·(Rn+τ j−τ i) (2.79)

(sji (q ·Rn))↓↓ = ei q
2
·(Rn+τ j−τ i) (2.80)

(sji (q ·Rn))↑↓ = 0 (2.81)

In the appendix in A.2 one can find a detailed derivation of these expressions.

Important to notice is that the Hamiltonian [Hjν
iµ (k, q)]σσ

′ of eq. 2.78 is expressed in
representation of the global spin-frame. In my diploma thesis [16] I used the description
in the local frame. In the local spin-frame the phase-factors [sji (q ·Rn)]σσ

′ are a bit more
complicated than in the global frame (see eqs. 2.80-2.83 in [16]), whereas the magnetic
Hamiltonian-part is of a simpler structure in the local frame.
The total energy of a spin-spiral system depends on the cone-angle Θ and the spiral-

vector q. A very insightful quantity is the magnon dispersion E(q) of a spin-spiral with
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ε

εF

without SOC 

with SOC 
ε0

F

Figure 2.14: Change in the Fermi energy after adding 1st-order SOC contribution. εF is
the Fermi energy with SOC, whereas ε0

F is the Fermi energy without SOC.

fixed cone-angle. This curve E(q) can be used to determine the Heisenberg exchange-
coupling parameters Jij or the Dzyaloshinskii-Moriya vectorsDij (see section 2.10, equa-
tions 2.100 and 2.102). For DMI SOC is necessary, which brings up the question how
to implement SOC in the framework of the generalized Bloch theorem. SOC breaks
symmetries by introducing a preferred direction for the magnetization, therefore in its
presence the generalized Bloch theorem is not valid. Within the generalized Bloch theo-
rem each unit cell, independent of the direction of the magnetic moments, is equivalent.
Therefore we add an additional energy-contribution induced by SOC after having cal-
culated the spin-spiral energies without SOC with the generalized Bloch theorem. This
is possible if one treats SOC in a perturbation-theoretical way [12, 13]:

εk,n(q) = ε0
k,n(q) + ∆εk,n(q) , (2.82)

where ε0
k,n(q) is the eigenenergy of the spin-spiral without SOC and

∆εk,n(q) = 〈Ψk,n|HSOC |Ψk,n〉 (2.83)

the 1st-order contribution due to SOC.

There is a possibility to calculate the new Fermi energy εF after adding ∆εk,n(q) to
the spin-spiral eigenenergies or to use the old Fermi energy ε0

F of the spin-spiral system
without SOC. In general the Fermi energies can shift considerable as indicated in the
figure 2.14. Ab-initio calculations for Fe/W-systems exhibit, that the new recalculated
Fermi energy is nearly the same as the old Fermi energy [12, 13]. In Fe/Pt-systems,
investigated in [16], there is a non-negligible difference between the old or new Fermi
energy. Nevertheless for the determination of the DM-constant D both methods predict
the same.
For the more detailed discussion of SOC it is intuitive, to take a look at the total

1st-order SOC contribution to the total energy using the new or old Fermi energy:

34



2.8 Non-collinear magnetism Theory

(a) unchanged Fermi energy:

∆ESOC(q) =
∑
k,n

f(ε0
k,n, ε

0
F ) · (ε0

k,n(q) + ∆εk,n(q))−∑
k,n

f(ε0
k,n, ε

0
F ) · ε0

k,n(q)

=
∑
k,n

f(ε0
k,n, ε

0
F ) ·∆εk,n(q) (2.84)

It can be proven [12] that
∆εk,n(−q) = −∆εk,n(q) . (2.85)

On the other hand, for the eigenenergies of the spin-spiral system without SOC we have

ε0
k,n(−q) = ε0

k,n(q) (2.86)

due to symmetry. Therefore the SOC-contribution fulfils the following relation:

∆ESOC(−q) = −∆ESOC(q) . (2.87)

It is also obvious that ∆ESOC ∝ ξSOC, which can be seen in expression 2.83.

(b) recalculated Fermi energy:

∆ESOC(q) =
∑
k,n

f(ε0
k,n + ∆εk,n(q), εF ) · (ε0

k,n + ∆εk,n(q))−
∑
k,n

f(ε0
k,n, ε

0
F ) · ε0

k,n

=
∑
k,n

[f(ε0
k,n + ∆εk,n(q), εF )− f(ε0

k,n, ε
0
F )] · ε0

k,n +∑
k,n

f(ε0
k,n + ∆εk,n(q), εF ) ·∆εk,n(q)

≈
∑
k,n

[f(ε0
k,n, ε

0
F ) ·∆εk,n(q) + (ε0

k,n(q) + ∆εk,n(q)) ·

(
∂f

∂ε0
k,n

·∆εk,n(q) +
∂f

∂ε0
F

· (εF − ε0
F ))] (2.88)

It is obvious that the relation 2.87 is not any more valid. In the case of εF ≈ ε0
F it is

fulfilled to a good approximation and we can use the old Fermi energy without causing
a significant error.

We should remark that treating SOC for spin-spirals in 1st-order perturbation the-
ory does not allow to calculate the magneto-crystalline anisotropy energy (MCA) of the
system. To treat also the MCA, one has to extend the mechanism to 2nd-order pertur-
bation theory [12, 13], which is not implemented in our code yet. Instead collinear SOC
calculations are used to determine the MCA.
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2.9 Force theorem

The self-consistent scheme of the tight-binding method (see figure 2.9) can require a
lot of computational time for systems with many basis atoms. Especially for magnon
dispersions, calculations for a large set of q-values have to be performed. Fortunately
one can spare a lot of computing time using the so-called force theorem [37, 38, 39].
The force theorem can be used in systems, where a small perturbation δH is added

to a system H0, whose self-consistent solution is known:

H = H0 + δH with H0 ·Ψ0
k,n = ε0

k,n ·Ψ0
k,n . (2.89)

For the perturbed system only one iteration is done, which is also known as “one-shot-
calculation”. Of course this one-shot-calculation depends delicately on the starting values
for the magnetic moments and Mulliken charges, therefore reasonable starting values
are necessary. The charges and moments of the converged unperturbed problem should
provide good starting values if the perturbation δH is small.
The force theorem can be expressed by the following relation:

Etot − E0
tot = Eband − E0

band

=
∑
k,n

f(εk,n, εF ) · εk,n −
∑
k,n

f(ε0
k,n, ε

0
F ) · ε0

k,n , (2.90)

where Eband is the band energy of the perturbed system, E0
band is the band energy of

the unperturbed system and Etot is the total energy of the perturbed system for a self-
consistent calculation (including double counting terms). Within the force theorem the
difference of the single particle energies is taken as approximation for the difference of
the total energies.
In the treatment of spin-spirals a self-consistent calculation for q = 0 (ferromagnetic

case) is performed and the converged charges and moments are used as starting-values
for a one-shot-calculation for q 6= 0.
To ensure that the force theorem is a proper approximation, in this case the spin-

spiral for q 6= 0 has to be only slightly different in comparison to the q = 0 -case. This
is definitely true for small cone angles Θ and small q-values.

2.10 Extended Heisenberg model

It is common to use a model-Hamiltonian to describe the magnetic interactions in a
(periodic) system. In the following sections the extended Heisenberg model is described
in detail [40].
In the extended Heisenberg model the following assumptions are taken into account:

• The magnetic moment of each atom is described by a localized (classical) spin-
vector Si at the corresponding lattice position.
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• The magnetic moment has a fixed absolute value, i.e. the absolute value of the
magnetic moment does not change with the q-value, which is an approximation for
larger cone-angles Θ in the spin-spiral case.

The extended Heisenberg model can be written as generalized scalar-product of spins:

Hex.Heisenberg = −
∑
i,j

STi · V ij · Sj . (2.91)

Here, V ij is a 3×3 matrix, which can be divided into a symmetric and an antisymmetric
part, V S

ij and V
A
ij:

V ij =
1

2
(V ij + V T

ij) +
1

2
(V ij − V T

ij) = V S
ij + V A

ij . (2.92)

It is common to divide the symmetric matrix V S
ij into a traceless part and an isotropic

exchange part:
V S

ij = [V S
ij − Jij · I] + Jij · I , (2.93)

with

Jij =
1

3
· tr[V S

ij] . (2.94)

The antisymmetric part can be expressed using a cross-product:

STi · V A
ij · Sj = Dij · (Si × Sj) , (2.95)

where
[V A

ij]nn′ =
∑
l

[Dij]l · εlnn′ . (2.96)

Here, εlnn′ is the Levi-Civita tensor.
Summarizing the extended Heisenberg model consist of the following parts:

Hex.Heisenberg = −
∑
i,j

[ Jij · STi · Sj︸ ︷︷ ︸
symmetric isotropic exchange

+STi · (V S
ij − Jij · I) · Sj︸ ︷︷ ︸

symmetric anisotropic exchange

+

Dij · (Si × Sj)︸ ︷︷ ︸
Dzyaloshinskii−Moriya interaction

] . (2.97)

In many cases the symmetric anisotropic exchange part is neglected except for the di-
agonal part

STi · (V S
ij − Jij · I) · Sj ≈ STi ·Ki · Si · δij , (2.98)

which describes the magneto-crystalline anisotropy (MCA) of the system with the MCA-
matrix Ki.
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2.10.1 Symmetric isotropic exchange

This part is the well-known Heisenberg exchange, which describes a ferromagnetic (Jij >
0) or anti-ferromagnetic (Jij < 0) coupling between the spins Si and Sj. If one considers
only next-neighbour coupling a collinear alignment of the spins would be the ground-
state solution. In general, it can be proven that a solution of the Heisenberg Hamiltonian
in a periodic system is a spin-spiral. For a spin-spiral with a cone-angle Θ, spiral-vector
q and the z-axis as the rotation axis, the Heisenberg model can be rewritten in the
following way using

Si =

cos(q ·Rn) · sin Θ
sin(q ·Rn) · sin Θ

cos Θ

 :

−
∑
m

∑
n∈shell(m)

Jm · S0 · Sn = −
∑
m

∑
n∈shell(m)

Jm · [cos2 Θ + sin2 Θ · cos(q ·Rn)] . (2.99)

Here a shell is a set of atoms, which have the same fixed distance from the reference
atom. For example shell(1) includes all nearest neighbours of the reference atom. If one
calculates the magnon dispersion E(q), the Heisenberg exchange-coupling parameters
Jn can be determined via the following equation:

1

sin2 Θ
· [E(q)− E(0)] = −

∑
m

∑
n∈shell(m)

Jm · [cos(q ·Rn)− 1] . (2.100)

The coupling parameters can be calculated via a fitting procedure to quantum-mechanical
results of the energy E(q).
An important quantity is the so-called spin-stiffness constant A, which describes

the pre-factor of the quadratic q-dependence in the magnon dispersion for very long-
wavelength spin-spirals, i.e. very small q-values. This quadratic q-dependence can be
easily seen from eq. 2.100 due to (1− cos(q ·Rn)) ≈ (q ·Rn)2 for small q.

2.10.2 Dzyaloshinskii-Moriya interaction

The antisymmetric exchange part in the extended Heisenberg model is also known as
Dzyaloshinskii-Moriya interaction (DMI) [28, 29]. In contrast to the symmetric ex-
change part the energies of the antisymmetric exchange part are in general different for
different rotational senses of the spin-spirals. This can be easily seen by rewriting the
antisymmetric part of the Hamiltonian as follows:

EDM = −
∑
m

∑
n∈shell(m)

Dm · (S0 × Sn)

= −
∑
m

∑
n∈shell(m)

Dm ·

 − sin Θ · cos Θ · sin(q ·Rn)
sin Θ · cos Θ · (cos(q ·Rn)− 1)

sin2 Θ · sin(q ·Rn)

 . (2.101)
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Figure 2.15: Different spin-spirals on an isotropic surface. Each case (a), (b) and (c) is
explained in the text. | modified fig. from [33]

In the special case of flat-spirals (Θ = π
2
), the equation simplifies to

EDM(q) = −
∑
m

∑
n∈shell(m)

(Dm)z · sin(q ·Rn) . (2.102)

From this expression it becomes clear that EDM(−q) = −EDM(q). Of course the ex-
pression for the DMI would be of an analogous form for flat-spirals in the x-z or y-z
plane.

In many cases only the first neighbour shell is considered for the DMI, therefore the
DM-constant D := D1 is determined via a linear fit to the magnon dispersion for small
q-values for which sin(q ·Rn) ≈ q ·Rn is valid.

Crucial for the appearance of the DMI is the presence of SOC and a non-inversion-
symmetric environment. Both requirements are needed, otherwise, the energy of a spin-
spiral is independent of the rotational sense due to symmetry arguments, i.e. EDM = 0.
As a deep understanding of the symmetry arguments is crucial for further analyse, we
provide a more detailed explanation.

If SOC is not considered, real-space and spin-space would be independent and a global
spin-transformation would not change the energy of the system. Now there exists a
mirror-transformation applied to a flat-spiral leads to the reversion of its rotation sense.
This mirror-plane is the plane, which is spanned by the spiral vector q and the rotation
axis of the spin-spiral. Since a global spin-transformation does not change the energy in
the system without SOC, it holds EDM(−q) = EDM(q) = −EDM(q) = 0.

The argument for a non-inversion-symmetric environment as requirement for non-
vanishing DMI is a little bit more complicated to understand, because the type of spin-
spiral plays also an important role. Figure 2.15 should help with the explanation. Here,
flat spin-spirals on a surface are displayed. In each case (a), (b) and (c) two spin-spirals
with equal |q| but opposite rotational sense are shown. The only difference among
(a), (b) and (c) is the rotation axis. In the cases (a) and (b) there is a preserved
mirror-plane, which leads to vanishing DMI. In the case (c) there is no mirror-plane due
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to the symmetry-breaking effect of the surface, which leads to a non-vanishing DMI-
contribution. These statements correspond to the case of an isotropic surface. For more
details about the symmetry of the DMI for more general systems the reader is referred
to reference [41].

2.10.3 Symmetric anisotropic exchange

As already mentioned in the extended Heisenberg model only the diagonal part of the
symmetric anisotropic exchange is considered, which can be identified as MCA. The
MCA is important to investigate the occurence of spin-spirals due to DMI, because
eventually the MCA can inhibit the development of a spin-spiral. For example if the
system in figure 2.15(c) has an easy axis perpendicular to the plane of the spin-spiral
and the MCA is strong enough, the system could favour a collinear alignment along the
easy axis over the spin-spiral structure even in the presence of DMI.
The stability of spin-spirals can be most easily investigated with a micromagnetic

model [42, 43]. Without going into details, we note that relations between the spin-
stiffness constant A, the DM-constant D and the MCA give a stability condition for
the development of a spin-spiral in the system. The micromagnetic model is based on
a continuum-theoretical approach for long-wavelength spin-spirals, which leads to the
following equation for the energy E of the spin-spiral in dependence of the spin-spiral
period length λ:

E(λ) = A · λ−2 +D · λ−1 + K̄ . (2.103)

The derivation of the spin-stiffness constant A and the DM-constant D with the help of
the magnon dispersion E(q), is explained in section 2.10.1 and 2.10.2. The connection to
eq. 2.103 can be easily seen by using |q| ∝ λ−1 in eq. 2.100 and 2.102 for small q-values.
The constant K̄ describes the average MCA over an entire period of the spin-spiral.
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3 Description of the inputcard

In this chapter the inputcard will be explained in detail. I strongly recommend to read
this chapter, if you are planning to use the JuTiBi code. The inputcard is divided
into thematic sub-parts, f. ex. the lattice-structure, magnetic properties etc. First I
give a general explanation how to use the inputcard properly without causing errors in
subroutines responsible for reading in the data (i.e. Ioinput and some "almost-copies"
of these subroutine). Then I will discuss the inputcard in detail. Note that a list of all
appearing keywords of the inputcard is presented in the appendix D.

3.1 Basic description of using the inputcard

The inputcard consists of several keywords (these should not be changed), which are all
written in capital letters. A lot of comments should simplify the use of the inputcard.
In this documentation the comments are removed in the quoted parts of the inputcard
to restrict the focus on the keywords. The complete inputcard (including all comments)
for the example of a self-consistent bcc-Fe calculation can be seen in the appendix C.
First of all the inputcard is not written in a fixed format, this means parts can be
shifted and one has not to take (too much) care in using the correct amount of indents
behind a keyword to ensure a correct import of the input values into the code. But of
course there are rules, which have to be followed:

• Do not change the keywords! This includes also the cases, where a "=" is set right
behind a keyword. Leave it there!

• Do not change the position of the values in respect to the position of the keywords.
This does not include any indents, but a value which stands in the same line than
the keyword should not be set into the next line under the keyword. Values in a
line under the keyword should not be written into another line in respect to the
position of the keyword. More informations can be found in the description of the
subroutine Ioinput. I would recommend to take a short look into the examples.

• Values, which should be read in from the inputcard should be located within the
first 80 columns of the inputcard. The routine Ioinput will not read in the data
further than the 80th column.

• If the code is behaving unexpected, there is possibly a mistake in the inputcard.
The most common mistake is to set logical variables into wrong relations to each
other. Sometimes the code would skip whole essential parts. For example if the user
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Description of the inputcard 3.2 inputcard: lattice structure

wants to carry out a non-magnetic calculation (spinlog=false), but the logical
blo_wave remains true the execution of the code could lead to some unexpected
results. The code does not check all cross-relations between the logical variables,
except of the most important ones, and as a consequence would give no error
message.

3.2 inputcard: lattice structure

Let us take a look into the first part of the inputcard:

----------------------------------------------------------------------
*** Structure Properties - Lattice ***

ALATBASIS= 2.87d0 1.0d0 1.0d0

BRAVAIS
-0.5d0 0.5d0 0.5d0
0.5d0 -0.5d0 0.5d0
0.5d0 0.5d0 -0.5d0

----------------------------------------------------------------------

This part of the inputcard is necessary to define the Bravais lattice. Behind the keyword
ALATBASIS the code demands the first lattice parameter a and the ratios of the lattice
parameters b

a
and c

a
. I recommend to give the lattice parameter a in units of Å. The

three lines under the keyword BRAVAIS are the three Bravais vectors B1, B2 and B3 in
units of a, b and c. Therefore the Bravais vectors in the inputcard are read in row-
wise!1 The above example of the inputcard is a bcc-lattice (in this case Fe with a lattice
parameter of a = 2.87 Å).
Note that the lattice parameters a, b and c will act separately on the x-, y- and z-

components of the denoted Bravais vectors and not separately on the denoted Bravais
vectors B1, B2 and B3 themselves. To be more precise this means if you have a denoted
first Bravais vector (1, 1, 1) and lattice parameters a, b and c the code will convert it to
the Bravais vector (a, b, c) and not to (a, a, a). In the case of cubic or tetragonal systems
both methods would be the same of course.

1In difference to the array abravais in the code, where the Bravais vectors are stored column-wise.

42



3.2 inputcard: lattice structure Description of the inputcard

If 1-dim. (or 2-dim. systems) are desired the third (and second) Bravais vector should
be switched to (0, 0, 0). Very important to mention is also that in these cases the
surfaces have to be located in the x−y-plane and a chain should be located along the
x-axis. Therefore the following structure should be used:

BRAVAIS BRAVAIS
1.0d0 0.0d0 0.0d0 B1x B1y 0.0d0
0.0d0 0.0d0 0.0d0 or B2x B2y 0.0d0
0.0d0 0.0d0 0.0d0 0.0d0 0.0d0 0.0d0

where B1x, B1y is the first 2-dimensional Bravais vector and B2x, B2y the second. Note
that in the 1- and 2-dim. case the relation between the lattice parameters b

a
and c

a
should

not be set to zero, but to some other arbitrary value! Otherwise the code will divide
through zero in the k-mesh creation.

To complete the lattice structure the positions of the basis atoms have to be set.

----------------------------------------------------------------------
*** Basis atoms in unit cell ***

CARTESIAN= T

BASATOMS
0.d0 0.d0 0.d0
0.5d0 0.5d0 0.5d0

NUMBASIS=2

----------------------------------------------------------------------

The keyword NUMBASIS is used to read in the number of basis atoms. To enter the
positions of the basis atoms, the user should insert them row-wise under the keyword
BASATOMS. The code reads in all numbasis lines under the keyword, but not further.
Therefore additional following lines are no problem. The vectors of the basis atoms
should be given in units of a, b and c as the Bravais vectors.
If the user wants to enter the basis atoms in cartesian representation, he should set

a T (for true) behind the keyword CARTESIAN, whereas a F (for false) should be used
for a Bravais representation. Note that in the case of a 2- (or 1-dim.) system the third
(and second) component of the basis atoms are always interpreted as given in cartesian
representation.
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3.3 inputcard: k-mesh properties

The following part of the inputcard is used to determine the k-mesh properties.

----------------------------------------------------------------------
*** k-Mesh Properties ***

BZDIVIDE= 20 20 20
KPOIBZ= 8000
IrrBZ= T
HARD_DISK=F

----------------------------------------------------------------------

In the section 6.2 within the description of the subroutine bzirr3d, the creation of the
k-mesh within the code is briefly explained. To define the mesh the code needs to
know the partitioning along the reciprocal Bravais vector directions, which has to be set
behind the keyword BZDIVIDE. The first value corresponds to the partition along the
first reciprocal Bravais vector, the second to the second and the third to the third.

Take care that the partition approximately fits to the (inverse) relations of the lattice
constants, otherwise the k-mesh is not properly chosen. I also would recommend to use
only even values, because in this case the k-mesh creation works best.

The total number of k-points has to be written behind the keyword KPOIBZ, which is
the product of the 3 mesh partition values. One can also enter a larger number here,
but this would be a waste of memory.

The keyword IrrBZ is used to decide, if the full k-mesh should be used in the di-
agonalization of the Hamiltonian (enter F) or if only the (full) irreducible part of the
mesh should be used (enter T). For calculations with spin-orbit coupling or non-collinear
magnetism I strongly recommend to use the full k-mesh, because there is no feature in
the code to use only some of the lattice symmetries to obtain a k-mesh suited to the
symmetries of the magnetic system.

If the eigenvectors for each k-point (and band index) shall be saved into the unfor-
matted files eigenvectors.unformatted and eigenvectors_mod.unformatted instead
into the memory fill in T behind the keyword HARD_DISK. For very large system with
a lot of k-points one should avoid saving the eigenvectors onto the hard disk, due to a
largely increased need of computational time.
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3.4 inputcard: Shell generation

----------------------------------------------------------------------
*** Properties of the Cluster Generation ***

MAXCLUST= 10000
RMAXIMAL= 4.5d0
RCUTOFF= 3.5d0
MAXBASIS= 50

----------------------------------------------------------------------

In this part of the inputcard the necessary properties for the shell generation are read
in. These values are used in the routines rrgen and clsgen99. In principle only the value
behind RCUTOFF is really important, whereas the other values are not very significant as
long as they are not too small.
First the maximum number of Bravais vectors within the created cluster should be

assigned via the keyword MAXCLUST. For the majority of applications the value should
be kept between 1000 and 10000. To be sure use a value of 10000, which should be
enough for all applications. If the maximum number of Bravais vectors is not sufficient
to create the cluster within the defined sphere, an error message from the subroutine
rrgen appears:

Dimension ERROR. Please, change the parameter NRD to 2001

A maximum number of basis atoms per unit cell has also to be defined behind the
keyword MAXBASIS, which is needed for the allocation of some arrays in the subroutine
clsgen99. If you want to spare a little bit memory space use the number of basis atoms
instead of the default value of 50. Note that a maximal number of atoms within the
cluster is calculated by multiplying the number of maximal Bravais vectors inside the
cluster with the number of basis atoms. If this number is larger than 10000, the code
sets it back to 10000 to prevent too large arrays and it outputs a warning message.
Additionally after defining the sizes of the arrays, the routines need two defined radii to

construct the clusters within this spheres. The first radius behind the keyword RMAXIMAL
is needed to roughly construct a first cluster containing only a set of the lattice vectors
of the system (see subroutine rrgen). This radius is in units of the lattice parameter a
and is of the magnitude of the radius, which is used for the cluster generation. Usually
the used radius of this first cluster, which is calculated intrinsically within the routine
rrgen, is much larger than the value behind RMAXIMAL. But as mentioned before this
value is not important as long as it is not too small, therefore use at least the same value
as behind the keyword RCUTOFF. The calculation of the shells are very fast and the
arrays do not occupy too much memory space (the majority is occupied by the stored
eigenvectors), therefore it is not necessary to think about optimized values in this case.
The really important value for the cluster generation is the cutoff-radius, which is

written behind RCUTOFF. It is given in units of the lattice parameter a and defines the

45



Description of the inputcard 3.5 inputcard: Properties of the basis atoms

sphere, inside which the neighbours are calculated. Neighbours lying outside this sphere
are not considered. In the case of the NRL-TB parametrization an additional cutoff-
parameter is introduced. The code checks automatically if this cutoff radius is smaller
than the defined cutoff radius of the shell generation. If this is not the case an error
message appears, telling the user to increase the value of RCUTOFF.

An additional feature provided by the JuTiBi code is the possibility to cut certain
bondings in the crystal. This will not change the symmetries of the lattice, but the
corresponding atoms of the removed bonding do not directly interact with each other.
This can change the physics of the system drastically and allows a deeper analyse of the
importance of some bondings. However, note that this feature is rather untested.

----------------------------------------------------------------------
*** Cut Bondings *** ! ALPHA STATUS

BONDCUT=F

NUMCUTBON=2
SPECBONDS
1 0. 0. 1.5
2 0. 0. -1.5

----------------------------------------------------------------------

To cut a specific bonding set BONDCUT to T and enter the type of bondings under
the keyword SPECBONDS. The bondings are removed from the array pos_cluster_atom,
which is also written out in the file shells_neighbours.dat and therefore this file should
be used to obtain the components of the bonding vectors. First specify the cluster atom
(i.e. the central basis atom of the cluster) in which the bonding is appearing and then
enter the x-, y- and z-component of the bonding in units of the lattice constant a. Keep
in mind that bondings should be removed symmetrically, otherwise the Hamiltonian
could be not hermitian!

3.5 inputcard: Properties of the basis atoms

The next part of the inputcard contains specific information about each basis atom.
The types of appearing atomic orbitals can be specified and the spin-orbit coupling
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parameters ξp and ξd have to be put here.

----------------------------------------------------------------------
*** Atominfo ***

LMAXIMAL=9
NUMELUC=18

-----------------|---------------------------------------
ZATOM #ORB | s_Orb | px_Orb py_Orb pz_Orb |
26.0d0 9 | 1 | 1 1 1 |
-----------------|--------------------------------------|
SOC-Parameter: | --- | 0.18d0 |
---------------------------------------------------------------
dxy_Orb dxz_Orb d_yz_Orb d(x2-y2)_Orb d(z2-r2)_Orb |

1 1 1 1 1 |
---------------------------------------------------------------|

0.06d0 |
----------------------------------------------------------------

-----------------|---------------------------------------
ZATOM #ORB | s_Orb | px_Orb py_Orb pz_Orb |
78.0d0 9 | 1 | 1 1 1 |
-----------------|--------------------------------------|
SOC-Parameter: | --- | 2.5d0 |
---------------------------------------------------------------
dxy_Orb dxz_Orb d_yz_Orb d(x2-y2)_Orb d(z2-r2)_Orb |

1 1 1 1 1 |
---------------------------------------------------------------|

0.53d0 |
----------------------------------------------------------------

-----------------------------------------------------------------------------

First the maximum number of appearing orbitals per atom has to be specified behind
the keyword LMAXIMAL. Usually the TB scheme includes the s-, p- and d-orbitals, which
leads to a value of 9 for LMAXIMAL. If all basis atoms are only treated within the s- and
p orbitals one can reduce this number to 4, but it is not necessary to change the value.
I recommend to keep the value always at 9, because it is a well tested case.

The number of electrons per unit cell enters behind the keyword NUMELUC.
The following table-like structure describes the atomic number, the type of used (or

non-used) orbitals and the SOC-parameters for each basis atom. Therefore if a system
consists of 10 basisatoms, one needs to specify 10 of these tables (use copy and paste!).
Do not change the structure of these tables and between two of these tables, one line
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has to be kept free, otherwise the code stops with an error message within the Ioinput
routine.

Now the structure of the table will be explained. The value under the keyword ZATOM
is the atomic number. This atomic number, unlike in ab-initio codes, is completely
unimportant in the TB scheme. It can act as classification of the basis atom, to distin-
guish the different types of basis atoms. But this distinction is only "on paper", because
the code distinguishes the atom types by the SKP-parameters, the mulliken charges and
exchange energies, which are defined in the inputcard.

The next adjustable property are the used (or non-used) atomic orbitals per basis
atom. For the NRL-TB scheme all 9 orbitals (s, p and d) should be activated, but
if arbitrary Slater-Koster parameters are used, one can switch off orbital types of the
basis atoms (see for example pure s- and p-treatment in [44]). To switch orbitals on
the specific basis atoms on (or off) set the values under the keywords s_Orb, px_Orb,
py_Orb, pz_Orb, dxy_Orb, dxz_Orb, dyz_Orb, d(x2-y2)_Orb, d(z2-r2)_Orb to 1 or 0.2
By switching orbitals on or off, one can change the basis representation of the system.
Therefore a system with pure d-orbitals has 4 basis functions less per basis atom than a
system with all 9 orbitals.

The last adjustable property of the basis atoms in this part of the inputcard are the
SOC-parameters of the p- and d-orbitals. Put the values under the specification-chart
of the p-orbitals and the d-orbitals (in above example: 0.18 eV for p and 0.06 eV for d
for the first basis atom). I recommend to enter this parameters in eV. The magnitude
of these parameters for several elements can be found in [45] and for Fe and Pt the
parameters are presented in the appendix B of this documentation.

2In the code only s_Orb, px_Orb and dxy_Orb act as keyword.
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3.6 inputcard: Slater-Koster parameters

In the following chapter of the inputcard specifications about the Slater-Koster parametriza-
tion (see section 2.3) can be done.

-----------------------------------------------------------------------------
*** Input of the Slater-Koster parameters ***

IDENTATOM=T
ONLYNEXTN=F
RNEIGH=3.5d0
SKPVARY=T
OVLAP=T
PAPA_BINA=T
TYP_BASAT
1 1
2 2
3 1

-----------------------------------------------------------------------------

The code mainly consists of two types of parametrizations. The first one is the NRL-
TB parametrization, which is explained in detail in the section 2.3. The second one is
based on a manual definition of the SKPs for each bonding. For users who only want
to use the code for calculations, I would strongly recommend to work with the NRL-TB
parametrization, because the second parametrization type is a not well-tested case, yet.
However it seems to work for very simple systems.

3.6.1 NRL-TB parametrization

This parametrization is less flexible and therefore I recommend to use the following
setup. To activate this parametrization enter a T behind the keyword SKPVARY. Then
choose ONLYNEXTN as F, because choosing it as T limits the hopping parameters to next-
neighbour hoppings only. Behind the keyword RNEIGH the code demands the distance
in units of the lattice parameter a in which the hopping parameters will be considered
as non-zero. In the case of the NRL-TB parametrization this value should be at least as
large as the cutoff radius in the parametrization. The cutoff radii of the parameter sets
can be found on the webpage [4]. The value behind RCUTOFF of the shell generation (see
3.4) should be at least as large as the value RNEIGH. Otherwise the size of the created
cluster is not sufficient to support all hopping parameters! Activate the treatment of the
overlap matrix by setting a T behind the keyword OVLAP. If a system consisting of two
different atom-types should be treated, then switch PAPA_BINA to T and specify the atom
type for each basis atom in the lines under the keyword TYP_BASAT. In above example the
first and third basis atom (for the positions see keyword BASATOMS in 3.2) are of the first
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atom-type, whereas the second basis atom is of the second type. Now the question arises,
where the NRL-TB parameter sets are read in? To have a clear arranged inputcard the
parameter sets with their parameters all′m, bll′m, cll′m, etc. (see 2.3) are imported from
another file with the name input_SKP_papakonst. In this file the parameter sets of the
specific element should be copied (unchanged!) from the webpage [4]. To distinguish
between the different atom-types the code needs two additional keywords, STA_READ
for the first atom-type and STA2_READ for the second atom-type, which should be set
directly above the parameter set. Therefore it should look as follows:

STA_READ
NN00000 (Old style Overlap Parameters - Not polarized)
Iron (Fe) -- Spin restricted -- 18 Jan 00 -- long range -- t2g=eg
1 (One atom type in this file)
16.5 0.5 (RCUT and SCREENL for 1-1 interactions)
9 (Orbitals for atom 1)
55.85 (Atomic Weight of Atom 1)
2.0 0.0 6.0 (formal spd valence occupancy for atom 1)

.167876018007E+01 0 1 Fe-para-001 lambda

.111237776825E+00 0 2 Fe-para-002 a_s

.157472037798E+03 0 3 Fe-para-003 b_s

.279493598875E+06 0 4 Fe-para-004 c_s
-.886322891071E+08 0 5 Fe-para-005 d_s
.512530808853E+00 0 6 Fe-para-006 a_p
..... etc.

Some additional notes concerning the NRL-TB parametrization:

• The keyword IDENTATOM is insignificant, because it is not used within the NRL-
TB parametrization, and the keyword SKPSPIN of 3.7 has to be F. The NRL-TB
parametrization implemented in this code has to be the spin-independent one.

• The NRL-TB parametrization for binary systems (i.e. systems consisting of two
atom-types) is not using the binary parameters of the page [4], because unfortu-
nately there is only a small amount of binary parameter sets. Therefore a simple
ansatz is used (see eq. 2.25) to model the hopping parameters between the different
elements. The used parameter sets are the sets for the pure systems (f.ex. an Fe-
and a Pt- set to describe Fe/Pt systems). More details about the quality of this
description can be found in [16].

• Using the NRL-TB parametrization the structures can be chosen within a wide
variety, but too small inter-atomic distances lead to unphysical descriptions of the
SKPs. An error message of the type

Problems with Diagonalization (S pos. definit?)

is probably based on this fact.

50



3.6 inputcard: Slater-Koster parameters Description of the inputcard

• More than two different atom-types can not be treated yet within the NRL-TB
parametrization implemented in the JuTiBi code. To treat more types of atoms
the alternative approach to define the SKPs by hand has to be used.

3.6.2 Setting SKPs by hand

The second type of parametrization for the SKPs within the code demands a manual
input of each Slater-Koster parameter. Therefore this parametrization is only suited
for smaller systems with nearest- (and 2nd nearest-) neighbour coupling. In return this
parametrization has the advantage to allow simple interpretations of the results and it
exhibits a large parameter-freedom.

The simplest possible parametrization based on next neighbour coupling and identical
basis atoms can be exclusively imported from the inputcard. In this case the keywords
IDENTATOM and ONLYNEXTN have to be set to T and the NRL-TB parametrization has
to be switched off by setting SKPVARY to F. If the overlap matrix should be included
set OVLAP to T. The Slater-Koster parameters for the next-neighbour distance can be
entered into the first columns of the following scheme:

----------------------------------------------------------------------

ONSITES=0.0d0 0.0d0
ONSITEP=0.0d0 0.0d0
ONSITED=0.0d0 0.0d0

s-couplings:
VSS_SIGMA=0.0d0 0.0d0 OSS_SIGMA=0.0d0 0.0d0
VSP_SIGMA=0.0d0 0.0d0 OSP_SIGMA=0.0d0 0.0d0
VSD_SIGMA=0.0d0 0.0d0 OSD_SIGMA=0.0d0 0.0d0

p-couplings:
VPP_SIGMA=0.0d0 0.0d0 OPP_SIGMA= 0.0d0 0.0d0
VPP_PI= 0.0d0 0.0d0 OPP_PI= 0.0d0 0.0d0
VPD_SIGMA=0.0d0 0.0d0 OPD_SIGMA= 0.0d0 0.0d0
VPD_PI= 0.0d0 0.0d0 OPD_PI= 0.0d0 0.0d0

d-couplings:
VDD_SIGMA=0.0d0 0.0d0 ODD_SIGMA=0.0d0 0.0d0
VDD_PI= 0.0d0 0.0d0 ODD_PI= 0.0d0 0.0d0
VDD_DELTA=0.0d0 0.0d0 ODD_DELTA=0.0d0 0.0d0

----------------------------------------------------------------------

The assignment of the Slater-Koster parameters to the keywords should be self-explaining.
Note that the keywords of the form Vµν−m are the SKPs for the Hamiltonian, whereas
Oµν−m are the SKPs for the overlap matrix, which have to be filled out only in the case
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OVLAP=T. The two columns of values behind each keyword can be used to define spin-
dependent SKPs. The first column represents the SKPs for the majority spin-channel,
whereas the second column contains the SKPs for the minority spin-channel. If the
keyword SKPSPIN (see section 3.7) is set to F the second column is not read in, therefore
the SKPs are treated spin-independent, whereas in the case SKPSPIN=T both columns
are imported.
Now there is also the possibility to generalize this scheme by considering not only

next-neighbour coupling, but also the 2nd nearest neighbours, and using two different
types of basis atoms, but then the SKPs have to be specified in the file SKPinput. The
parametrization is based on the type of parametrization found in [46]. The following
insight into the file should demonstrate how to work with this parametrization:

BOND | VSS_SIGMA | VSP_SIGMA | VSD_SIGMA | VPP_SIGMA
------------------------------------------------------------------------------------------------------------------------
1 1 | 0.0032 -0.0437 0.0 -0.0009
2 2 | -0.1038 -0.0919 0.0 0.4828
1 2 | 1.4895 -1.5445 0.0 2.1517
2 1 | 1.4895 2.5864 0.0 2.1517
------------------------------------------------------------------------------------------------------------------------
1 1 | 0.0032 -0.0437 0.0 -0.0009
2 2 | -0.1038 -0.0919 0.0 0.4828
1 2 | 1.4895 -1.5445 0.0 2.1517
2 1 | 1.4895 2.5864 0.0 2.1517

ONSITES
-7.7859d0 -0.2676d0
-7.7859d0 -0.2676d0

First the atom-types involved in the bonding have to be specified under the keyword
BOND and then the value for the Slater-Koster parameter has to be set under the corre-
sponding keyword matching to the SKP. For example the value in the row 2 2 under the
keyword VSP_SIGMA is the Slater-Koster parameter Vspσ for the bonding between the two
atoms of the same atom-type 2. Note that the SKPs for the bonding-types 1 2 and 2 1
have to be the same for symmetric SKPs, but are generally different for non-symmetric
SKPs (as Vspσ). The first 4 rows in above example are the SKPs for the majority spin-
channel, whereas the following 4 rows (which have the same values in above example)
are the SKPs for the minority spin channel. Under the keyword ONSITES the on-site
energies for the s-orbital have to be specified. The first row stands for the majority spin,
whereas the second row stands for the minority spin. The columns fit to the type of
basis atom.
In principle this scheme can be extended to an arbitrary number of (different) basis

atoms. However writing the input-file SKPinput would be a very unpleasant work.
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Additionally the code was only tested for the case of of two different types of basis
atoms, therefore debugging would probably be necessary.

3.7 inputcard: Magnetic properties and SOC

The next part of the inputcard is used to define the magnetic properties of the system.
The keyword SKPSPIN is already discussed in the section 3.6, but due to its strong
relationship to the magnetic properties it is located in the magnetic "chapter" of the
inputcard.

----------------------------------------------------------------------
*** Magnetic Properties and SOC ***

SPINLOG= T
SKP_SPIN=F

XC_ENERGY
1 0.12 0.12 1.2
2 0.01 0.01 0.1

STON_PARA
1 0.096d0 0.096d0 0.96d0
2 0.058d0 0.058d0 0.58d0

SET_GAXIS=F
ROT_SPIN= 0.0d0 0.0d0 0.0d0

SOCLOG= T

----------------------------------------------------------------------

The keyword SPINLOG is used to include the spin-dependence into the Hamiltonian.
Magnetism can only be calculated, if SPINLOG=T. Non-magnetic systems can be treated
either by setting SPINLOG=F or by switching the exchange energies to zero for the case
SPINLOG=T. In comparison the first method takes only approximately half of the com-
putational time.
The exchange energies of the system for each basis atom enter under the keyword

XC_ENERGY. For each basis atom the exchange energies (in eV) of the s-, p- and d-
orbitals have to be put into one row. For transition metals the exchange splitting in the
d-orbitals is the most important one. The self-consistency of the JuTiBi code is based
on the d-moments and the Mulliken charges (see chapter 2), therefore I recommend to
treat the s- and p-splitting by setting it 10-times smaller than the d-splitting. Note
that the entered exchange energies act as starting values in the case of a self-consistent
calculation (if RESTA_SC=F, see 3.8).
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The magnetism in the JuTiBi code is based on a Stoner model, therefore an additional
Stoner parameter is needed, which enters under the keyword STON_PARA for each atom-
type.3 Each row contains the s-, p- and d-Stoner parameter in eV, and I recommend
again to use a 10-times smaller Stoner parameter for the s- and p-orbitals than for the
d-orbitals. The Stoner parameters of a couple of elements can be found in [47, 48] and
the parameters for Fe and Pt can be found in the appendix B of this documentation.

If only SPINLOG=T and SOCLOG=F the Hamiltonian will be diagonalized separately
for each spin-channel by the code. Incorporating spin-orbit coupling or non-collinear
magnetism leads to a Hamiltonian, which can not be diagonalized separately in the
spin-channels any more. To take this into account switch SOCLOG to T. It is important
to remember that the keyword SOCLOG does not only stand for the treatment of spin-
orbit coupling. Always in the case where the full Hamiltonian in spin-space has to be
diagonalized, use SOCLOG=T, therefore also for the non-collinear case as nc_in_uc=T or
blo_wave=T (see later in this section)! Note that this leads to an approximately 4-times
increased need of computational time. If no SOC is wished, but a non-collinear magnetic
system should be treated use SOC-parameters of zero (see 3.5).

3Note that it is each atom-type and not each basis atom!
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In the case SOCLOG=T one can decide to perform a global spin rotation to the system.
To do this the program yields two possibilities. The first one is using the non-collinear
magnetism scheme of the inputcard explained later in this chapter. I recommend to
use this first method, because it is well-tested compared to the 2nd possibility, which is
based on the keywords SET_GAXIS and ROT_SPIN. But nevertheless I will briefly explain
the second method. In this case switch SET_GAXIS to T and define the new direction
of the magnetic moments (in cartesian coordinates) by setting it behind the keyword
ROT_SPIN. The direction does not have to be normalized and keep in mind that the
rotation bases on the assumption that all spins were pointing collinear along the z-axis
before. Therefore these method can not be combined with a non-collinear treatment of
the spins. However, as mentioned before I recommend to use the non-collinear scheme,
which first part is presented in the following:

----------------------------------------------------------------------
*** Non-collinear-Magnetism (including anti-ferromagnetism) ***

NCMAG=T

NC_IN_UC=T

NC_ANGLES
1 0.0d0 0.0d0
2 180.0d0 0.0d0

-------Constraint for magnetic moments:
CONST_ANG=F
U_CONST= 0.d0

-------Spin-spirals:
BLO_WAVE=T
BLO_THETA= 0.0d0
BLO_Q= 0.5d0 0.0d0 0.d0

FLAT_SPIR=T

----------------------------------------------------------------------

First of all the keyword NCMAG has to be switched to T to treat non-collinear magnetism.
Then there are two main approaches to describe non-collinear magnetism (in particular
spin-spirals) in the JuTiBi code. These two approaches are adumbrated in figure 2.13.
If a treatment with manually fixed magnetic moments as in fig. 2.13a is wished, switch
NC_IN_UC to T and enter the angles Θ and φ (see fig. 2.10) of each magnetic moment
for each basis atom under the keyword NC_ANGLES. After specifying the basis atom
via a number, enter first Θ and then φ in degrees and note that angles above 180◦
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are not allowed. This method of working with non-collinear magnetic systems has the
advantage to allow a treatment of magnetic structures of arbitrary complexity. However,
for treating spin-spirals there is a more efficient method using the generalized Bloch
theorem (see section 2.8.2) incorporated into the code. To make advantage of this
gen. Bloch theorem set the keyword BLO_WAVE to T and specify the type of spin-spiral
including the cone-angle Θ and the spin-spiral vector q (see fig. 2.12). The cone-angle
between 0◦ and 180◦ has to be entered behind BLO_THETA and the components of the
spin-spiral vector q in cartesian coordinates and in units of 2π · ( 1

a
, 1
b
, 1
c
) enter behind

the keyword BLO_Q. Working with these coned spin-spirals does not allow to investigate
the so-called Dzyaloshinskii-Moriya interaction in surface-systems (see [16]), because a
spin-spiral rotating in the x-z-plane is needed to obtain the symmetry-breaking in the
surface system. The rotation of a coned spin-spiral takes place inside the x-y-plane
(i.e. the z-component of the magnetic moments is fixed). The JuTiBi code allows to
treat so-called flat spirals (or planar spirals), in which the magnetic moments are lying
completely inside the x-z-plane, by switching FLAT_SPIRAL to T. Note that in this case
the cone-angle has to be set to zero!

The code allows also to incorporate phase-shifts to the angles Θ and φn = q · Rn

in the spin-spiral case. For example two anti-ferromagnetic coupled spin-spirals can be
realized within this method as in the above example of the inputcard.4 To treat such
systems switch on NC_IN_UC and BLO_WAVE (and not only BLO_WAVE) and specify the
additional phase-factors under the keyword NC_ANGLES. Note that in the flat-spiral case
only additional phase-factor for the angle Θ can be used! For more details take a look
into the description of the subroutines moments−local−to−global and create−Hmagnetic.
It should be mentioned that the possibility to include phase-shifts for the spin-spiral
calculations is not extensively tested yet, therefore be aware of bugs.

In addition the code allows to fix the Θ-angles of the magnetic moments (for the
spin-spiral the cone-angle) with the help of a constraint (see 2.8). If the energy of a
non-stable magnetic configurations should be calculated within the self-consistent TB-
scheme (see fig. 2.9), this constraint has to be used. Otherwise the magnetic system
converges against a stable (ground-state) solution. To activate this constraint switch
CONST_ANG to T and enter a rather large energy-value of about 5 eV for the Lagrange
parameter of the constraint behind the keyword U_CONST.

The two possibilities to describe non-collinear magnetic systems are described in much
more detail in 2.8 and in particular also in the description of the subroutines (see section
6.2). For interested users I would also recommend to take a look into the appendix A.2,
which describes rather detailed how the gen. Bloch theorem is implemented.

4Flat-spiral with anti-ferromagnetic coupled spins between the first and second basis atom of the unit
cell, realized by incorporating a phase shift of Θ = 180◦ between the two basis atoms.
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The JuTiBi code is in particular configured to treat spin-spiral systems. The second
part of the non-collinear scheme in the inputcard can only be activated if BLO_WAVE=T.
One can decide to calculate not only the spin-spiral for one q, but rather all q-values
along a defined way (LOG_Q_WAY=T) or in a q-mesh (LOG_QMESH=T). Calculating both
together within one calculation is not possible!

----------------------------------------------------------------------

-------Treatment of SOC in spin-spirals:
SOC_PERTU=F
CHG_FE=F

-------q-mesh:
LOG_QMESH=F
BZQDIVIDE= 10 10 10
QPOIBZ= 1000
IRRQBZ=T

-------q-way:
LOG_Q_WAY=F
NUMQWAYS=3

NUM_QWAY CREA_QWAY
10 0.0d0 0.d0 0.d0 0.5d0 0.5d0 0.d0
10 0.5d0 0.5d0 0.d0 0.5d0 0.5d0 0.5d0
10 0.5d0 0.5d0 0.5d0 0.d0 0.d0 0.d0

----------------------------------------------------------------------

If a calculation with q-points in a q-mesh is wished specify the partitioning along the
reciprocal Bravais vectors (BZQDIVIDE), the total number of q-points (QBOIBZ) and the
usage of the irreducible part of the q-mesh (IRRQBZ) as in the case of the k-mesh creation
(see section 3.3 for more information!). A calculation using a q-mesh allows to calculate
the Heisenberg exchange-coupling values later on with the help of an external program.
The file jenerg.dat, which is necessary for this determination is only created in the
case LOG_QMESH=T.

To calculate the magnon dispersion of the magnetic system use a q-way by defining
all start- and end-points of the separate paths, which sum up together to the q-way.
The paths are the linear connections between the start- and endpoints given in units of
2π · ( 1

a
, 1
b
, 1
c
), which should be specified under the keyword CREA_QWAY. The number of

used paths has to be defined behind the keyword NUMQWAYS. For each path the number of
used q-points enters under the keyword NUM_QWAY. In above example the q-way consists of
three paths each containing 10 q-points. The first path is along (0, 0, 0) → (0.5, 0.5, 0),
the second path is going along (0.5, 0.5, 0) → (0.5, 0.5, 0.5) and the third path along
(0.5, 0.5, 0.5)→ (0, 0, 0). Note that the maximum number of adjustable paths is 10.
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The generalized Bloch theorem can not be used any more if spin-orbit coupling is con-
sidered. However, a 1st order perturbation theoretical treatment of spin-orbit coupling
is possible (see 2.8.2). For example this becomes necessary in the investigation of the
Dzyaloshinskii-Moriya interaction as done in [16]. To switch on the perturbation the-
oretical treatment of SOC set SOC_PERTU to T. If the Fermi energy should remain
unchanged after adding the 1st order contributions use CHG_FE=F (see eq. 2.84), whereas
a recalculation of the Fermi energy is done in the case CHG_FE=T (see eq. 2.88).
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3.8 inputcard: Self-consistency

The following part of the inputcard contains all properties for the self-consistent scheme
of the JuTiBi code (see fig. 2.9).

----------------------------------------------------------------------
*** Properties for the self-consistent calculations ***

TB_SELFC=T

SELF_U
1 5.0d0
2 5.0d0

CHARGE_0
1 8.0d0 8.0d0
2 10.0d0 10.0d0

Method of Mixing:

MIX_LIN=F
MIX_ALPHA=0.1d0

MIX_BROY=T
N_IN_LIN=3

MAX_ITER=400
SELF_COND=0.00001d0

RESTA_SC=F
RESTA_IT=0

----------------------------------------------------------------------

To activate the self-consistent scheme set TB_SELFC to T and specify the type of mixing.
The code allows to use a simple linear mixing, which is very stable but also very slow.
To use this type of mixing enter a T behind the keyword MIX_LIN. The linear mixing
parameter is specified behind the keyword MIX_ALPHA. The mixing parameter has to be
a value between 0 and 1.
The second possible mixing incorporated into the code is an extended Broyden mixing

scheme [25, 49], which can be activated by setting MIX_BROY to T. Broyden mixing
allows a very fast convergence, but could be unstable for some systems. If the JuTiBi
code outputs non-physical magnetic moments or charges during the self-consistent cycles
(f.ex. larger magnetic moments than the atomic ones) or diverges to infinity, try the
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self-consistent scheme again with a better converged start-density or use linear mixing
instead! If Broyden mixing is activated deactivate linear mixing by setting MIX_LIN=F,
but note that also the Broyden mixing scheme needs a linear mixing parameter for the
first N_INIT_LIN steps, which will be linear mixing steps. I would recommend to use at
least N_INIT_LIN=1 linear mixing steps before going to Broyden mixing. Even better
are about 3-10 pre-linear mixing steps, to avoid divergence problems.

The code needs a maximum number of iteration-steps, after which it would stop
automatically if the system is not converged yet. I recommend to leave this value behind
the keyword MAX_ITER to 400. The value ε behind the keyword SELF_COND determines
the digit up to which the self-consistency variables have to converge (see value ε in
fig. 2.9). A value of 10−5 is reasonable, but for more precise calculations one should
decrease it. However, keep in mind that the TB-scheme implemented in the JuTiBi
code is not really suited for very precise and accurate calculations.

The "start-densities" in the self-consistent scheme of the JuTiBi code are the Mul-
liken charges and the magnetic d-moments of the basis atoms. The start-values for the
magnetic moments are determined in the form of the exchange-energies5 in the part of
the inputcard about magnetism and SOC (see section 3.7). The Mulliken charges (in
units of e) are defined in this part of the inputcard under the keyword CHARGE_0. After
specifying the number of the basis atom two additional values have to be entered per
row. The first value is the start-value of the Mulliken charge, whereas the second value
is the desired reference charge within the local charge neutrality scheme (see section
2.5). I recommend to use the same values for the start-charges as long as one does not
have converged or pre-converged charges for the system. Additionally the local charge
neutrality part of the Hamiltonian needs a LCN-parameter ULCN for each atom-type
(not each basis atom!) in the unit cell. Specify them under the keyword SELF_U! I
recommend to use a value of 5 eV for each type of atom.

Sometimes it is necessary to pre-converge the system and use the pre-converged values
as start-values for the "real" self-consistent calculation. For this purposes there is the
possibility to read in the start-values for the charges and the exchange-energies not
from the inputcard, but rather from the file TB_SC_values.dat, which contains all
converged values of the calculation before for each iteration step.6 First one should
switch RESTA_SC=T to activate this possibility. The user does not have to copy the
values into the inputcard (but of course this is also working). One can specify the
iteration-step inside this file, denoted by ITER_, from which the values are used as new
start-values of the self-consistent cycle. This iteration-step enters behind the keyword
RESTA_IT.

5Note that εexc
iµ = Iiµ ·md

i .
6Note that this file is overwritten in each calculation, therefore make a safety-copy before.
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3.9 inputcard: Density of states

In this part of the inputcard all properties for the calculation of the density of states
(DOS) are specified. Additionally the properties of the Fermi-Dirac smearing function
can be entered.

----------------------------------------------------------------------
*** Properties for DOS calculation ***

NUMENDOS=1000
LORWIDTH=0.1d0
FACLOR= 30

SMEAR_MAG=T
FERM_BROD=0.001d0

DOSORBAT=T

LOGSPEC=F
SPECORBAT
1 5

DOS_LOCAL=F

LOG_F_SUR=F

----------------------------------------------------------------------

First I would suggest to take a look into the description of the subroutine calc−DOS,
because a lot of useful details about the calculation of the DOS are presented there. As
one can read there, the DOS-calculation needs an energy-mesh and the specifications
about the Lorentzian functions entering the eq. 2.30. The number of energy points inside
the energy-mesh is read in behind the keyword NUMENDOS. The width of the Lorentzians
in eV is specified behind LORWIDTH and the factor FACLOR determines the range 2α · w
(see subroutine calc−DOS) in which the DOS-calculation will be carried out. Note that
all three properties NUMENDOS, LORWIDTH and FACLOR are closely related to each other
in the DOS-calculation. Therefore changing only one quantity to improve the quality
of the DOS is not enough in the most cases. To get a feeling how the DOS is changing
with respect to this values work out the example 5.4 in chapter 5.

The total DOS is calculated by default, but the partial DOSs are not calculated
by default. To activate the calculation of these atom- and orbital-resolved DOSs set
DOSORBAT to T. If only the partial DOS to a special basis atom and orbital is needed,
one can spare computational time by using LOGSPEC=T and specify the basis atom and
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orbital under the keyword SPECORBAT for which the partial DOS should be calculated.7
If all partial DOSs should be calculated leave SPECORBAT=F.

For a non-collinear magnetic systems it is useful to display the DOS in the local spin-
frame of each basis atom instead of the global one. To activate a rotation of the eigen-
vectors into the local spin-frame before the calculation of the DOS, switch DOS_LOCAL
to T. It should be mentioned that this property is not well-tested, therefore debugging
could be necessary.

For the DOS calculation (and also for the calculation of the energies and charges etc. )
usually a Fermi-Dirac smearing function is used to simplify the convergence and obtain
"nicer" results. In the case of the DOS calculation this smearing function can be deac-
tivated by setting SMEAR_MAG to F. However, I strongly advise against the deactivation
of the smearing function, because it could lead to a lot of computational problems. The
thermal smearing (or broadening) of the Fermi-Dirac functions kB · T enters behind the
keyword FERM_BROD. The smearing is given in eV and I suggest to use a smearing of
about 1-10 meV to obtain accurate results combined with a stable convergence.

In this part of the inputcard the keyword LOG_F_SUR can be used to activate the cre-
ation of a file fermi_surface.bxsf, which can be imported into the program XCrysDen
[50] to display the Fermi surface of the system. To do this set LOG_F_SUR to T.

7The assignment of the numbers to the orbitals is as follows: 1 : s, 2 : px, 3 : py, 4 : pz, 5 : dxy, 6 : dxz,
7 : dyz, 8 : dx2−y2 , 9 : dz2 .
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3.10 inputcard: k-way

In this part of the inputcard the properties of the k-way can be entered. A k-way is
necessary to investigate the band structure of the system.

----------------------------------------------------------------------
*** Properties for the band structure ***

NUMWAYS=4

NUMPTSWAY CREATEWAY
100 0.5 0. 0. 0.5 0.5 0.
100 0.5 0.5 0. 0.5 0.5 0.5
100 0.5 0.5 0.5 0.0 0.0 0.0
100 0. 0. 0. 0.5 0.0 0.0

FAT_BANDS=T

----------------------------------------------------------------------

The structure of this part of the inputcard is almost the same as in the definition of
the q-way to calculate the magnon dispersion of spin-spirals in the system (see section
3.7). The k-way is defined in separate straight k-paths, which start- and endpoints
should be entered under the keyword CREATEWAY. This start- and endpoints of the k-
paths have to be in units of 2π · ( 1

a
, 1
b
, 1
c
). Set the number of separate k-paths behind the

keyword NUMWAYS, which commands the code to read in only the first NUMWAYS rows under
CREATEWAY. The number of k-points for each k-path are specified under the keyword
NUMPTSWAY in front of the corresponding start- and endpoint of the k-path. In above
example the k-way consists of four paths each containing 100 k-points. The first path is
along (0.5, 0, 0)→ (0.5, 0.5, 0), the second path is going along (0.5, 0.5, 0)→ (0.5, 0.5, 0.5)
and the third path along (0.5, 0.5, 0.5) → (0, 0, 0). The last path starts at (0, 0, 0) and
ends at (0.5,0,0). Note that the maximum number of adjustable k-paths is 10 in the
JuTiBi code!
In addition to the corresponding eigenenergies for each k-point, there is the possibility

to also write out the squares of the absolute values of the components of the correspond-
ing eigenvectors into the external files (see chapter 4). This can be for example used to
plot "fat bands" of the system (see f. ex. [22]). To activate this feature set FAT_BANDS
to T.
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4 Output of the JuTiBi code

In this chapter the output of the JuTiBi code is explained in detail. First the output
on the screen during the calculations is explained and after that the structure of the
created external files is shown in detail.

4.1 Output on the screen

The output on the screen should give the user the possibility to follow the calculation
steps of the JuTiBi code in real-time. This output can also help to locate errors in the
inputcard and I used it extensively for debugging. In the following the structure of
this output is explained in detail, but note that I will not mention each aspect. The
output can also vary in its structure depending on the type of calculation the user is
performing (f.ex. settings of spinlog, soclog, tb_sc etc.). However, these explanations
should help to introduce the user to the output, so that he should have no big problems
to understand it for all possible settings.

The first sections display the most important entries of the inputcard, which are read
in by the subroutine readdim (see section 6.2). These sections can be used to control the
correctness of the inputcard. This output is structured within the thematic sections of
the inputcard. For example the section about magnetism and SOC has the following
form:

################################
Magnetism ,SOC:
READ IN : Consider electron spin
Dimension of the Hamiltonoperator WITH SPIN: 36
READ IN: Stoner-Parameters (s,p,d): atom-type 1 with
9.600000000000000E-002 9.600000000000000E-002 0.960000000000000

READ IN: Stoner-Parameters (s,p,d): atom-type 2 with
5.800000000000000E-002 5.800000000000000E-002 0.580000000000000

READ IN : Use NRL-TB parametrization
READ IN : Consider SOC
READ IN : Consider non-collinear magnetism
READ IN : Treat spin-spirals with gen. Bloch theorem
################################

Other thematic sections are the structure properties, mesh properties, the definition
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of the k- and q-ways, the properties of the clusters, the properties of the DOS, and
properties of the self-consistent TB-scheme. They are not explained in any detail here.
The next part of the output shows the entered lattice constants a, b and c, the Bravais

vectors and the basis atoms of the system1. The subroutine lattix−TB calculates the
reciprocal Bravais vectors, which are displayed in units of 2π · ( 1

a
, 1
b
, 1
c
). Therefore the

product between the matrix containing the Bravais vectors and the matrix containing
the reciprocal Bravais vectors has to be the unity matrix! Additionally the volume of
the unit cell (in units of a · b · c) and the basis atoms in cartesian representation are
displayed.

################################
READ IN: Bravaisvectors and Lattice constants
READ IN : Lattice parameters 2.87000000000000 2.87000000000000

2.87000000000000

READ IN : Bravais vectors
-0.500000000000000 0.500000000000000 0.500000000000000
0.500000000000000 -0.500000000000000 0.500000000000000
0.500000000000000 0.500000000000000 -0.500000000000000

READ IN : Basis atoms
0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000

READ IN: Basisatoms in CARTESIAN representation

lattix_TB: Reciprocal Bravais vectors:
0.000000000000000E+000 1.00000000000000 1.00000000000000
1.00000000000000 0.000000000000000E+000 1.00000000000000
1.00000000000000 1.00000000000000 0.000000000000000E+000

lattix_TB: Volume of unit cell: 0.500000000000000
lattix_TB: Basis atoms in cartesian coord.:
0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000

################################

Now the symmetries of the lattice are determined in the subroutine findgrp (see section
6.2). First the number of symmetries is displayed and then a detailed analysis of the type
of these symmetries is given.2 In the lower example the symmetries of a bcc-lattice are
presented. Afterwards the properties of the constructed k-mesh within the subroutine
bzirr3d are shown, which are the number of k-points in the (irreducible) k-mesh and the
volume of the full reciprocal unit cell in units of a, b, c. The product between the volume

1Row-wise and in units of a, b, c.
2Here the convention by Cornwell [51] is used.
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of the reciprocal unit cell and the volume of the (real-space) unit cell has to be one!
Note that an external file containing all k-points of the k-mesh (including the weights)
is created, which is discussed in section 4.2 of this chapter.

################################
findgroup: Calculating Bravais- and Basisvectors into a.u.
findgroup: Number of symmetries: 48
findgroup: Symmetry-operations: E C3alfa C3beta C3gamma
C3delta C3alfa-1 C3beta-1 C3gamma-1 C3delta-1 C2x C2y
C2z C4x C4y C4z C4x-1 C4y-1 C4z-1
C2a C2b C2c C2d C2e C2f IE
IC3alfa IC3beta IC3gamma IC3delta IC3alfa-1 IC3beta-1 IC3gamma-1
IC3delta-1IC2x IC2y IC2z IC4x IC4y IC4z
IC4x-1 IC4y-1 IC4z-1 IC2a IC2b IC2c IC2d
IC2e IC2f
BZIRR3D: Irreducibel BZ will be computed:
BZIRR3D: Reciprocal lattice has 48 symmetries
BZIRR3D: The real lattice 48 symmetries will be used
BZIRR3D: Number k points in k-Mesh: 256
BZIRR3D: Volume of BZ in units of a*b*c: 2.00000000000000
############################

The next part of the output presents all interesting information about the construction
of the neighbour shells. The imported radius RMAXIMAL of the inputcard is shown in
units of a and as mentioned in section 3.4 this radius is used to define a rough first cluster
containing only the Bravais vectors (see subroutine rrgen). The radius of this cluster,
chosen automatically within the code, is displayed as cluster-radius R and it is usually
much larger than the radius defined behind the keyword RMAXIMAL of the inputcard.
Additionally the number of created Bravais vectors inside this cluster is displayed.

This created pre-cluster is used in the subroutine clsgen99 to obtain the neighbour
shells of each basis atom. The number of neighbour atoms inside the cutoff radius3 is
shown for each basis atom. In addition a coupling matrix of the cluster is presented,
which indicates whether the bondings between the basis atoms of the unit cell are inside
the cutoff-radius, which would be indicated by a 1. In the lower example a bcc-lattice
with one basis atom was used, therefore the coupling matrix is rather uninteresting in
this case. However, for large unit cells it could be interesting to take a look, which basis
atoms are decoupled from each other in the cluster generation due to their large bonding

3This radius has to be smaller than the cluster radius and at least as large as the cutoff radius of the
NRL-TB parametrization (if this parametrization is used)!
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distance.

############################
RRGEN: Generation of real space cluster:
READ IN : Min. Radius in units of a: 4.500000
RRGEN: Cluster-Radius R: 8.250010 (units of a)
RRGEN: mesh divisions : 10 10 10
RRGEN: vectors created : 4513
CSLGEN99: Clustergeneration for basis atoms:
READ IN : Cutoff radius for Cluster-Generation (in units of a) 3.500000
CSLGEN99: Atom 1 has cluster with 339 atoms
CSLGEN99: Coupling-Matrix of the Cluster:

1 1
##########################

Note that an external file containing the positions of all neighbours inside the cutoff-
radius is created. This file will be discussed in detail in section 4.2 of this chapter.
The output of the last preparation steps before the diagonalization of the Hamiltonian

are presented in the following. First the number of considered neighbours inside the
cutoff-radius for each basis atom is presented again. Then the atom types in order of
the basis atoms are shown. Afterwards the subroutine protohamiltonian reads in the
start Mulliken-charges (in e) and start magnetic moments (in µB) in the d-orbitals of
each basis atom. These values are displayed within following structure:
Number of basis atom, Mulliken-charge, cartesian x-, y- and z-component of the

magnetic (net-)moments in the d-orbitals.
I recommend to take a look into these outputs during each calculation to check the

inputcard for errors in the definition of the magnetic structure.

##########################
Starting protohamiltonian:
READ IN: Overlap included!
Number of (nearest) neighbours for 1.,2.,... atom:

338
Atomtype of the 1.,2.,... atom:

1
Starting values for the Charges
and magnetic d-moment (x,y,z) for each basis atom:
1 8.00000 0.00000 0.00000 2.50000

##########################

If the NRL-TB parametrization is used some additional information is given in the
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output. First the type of parameter set of each atom type4 imported from the file SKP_
input_papakonst is specified with respect to the material and the overlap parametriza-
tion, which can be the old one or the new scheme (see [6]). Finally the number of
neighbours inside the defined NRL-TB cutoff radius is presented. This number has
to be smaller than the number of considered neighbours within the shell generation,
otherwise an error message appears.

##########################
READ IN : NRL-TB parameters
READ IN : Iron - old
Considered neighbours within cutoff: 258
#####################################################

After all these preparations the diagonalization of the Hamiltonian is starting. The
Fermi energy, the charges and the total energy will be calculated and displayed on the
screen. In the case of a spin-spiral calculation these values are determined for each q-
point. In the case of a self-consistent calculation the charges and the Fermi energy are
displayed for each iteration step. Therefore the output has the following structure:

q-Vector: 1 0.00000 0.00000 0.00000

Iterationstep: ** 1 **
... etc.

SC-calculation converged!

Now: Calculation of the energies.
#################################
###### Energy analysis:
Band energy in eV: -1.56535
Double counting corrections in eV:
LCN: 0.00000
Stoner model: 1.67002
Constraint for mag. moments: 0.00000

**Total energy**: 0.10467
#################################

Finished q-vector: 0.000000 0.000000 0.000000 || Step 1 of 50

After specifying the q-vector in units 2π · ( 1
a
, 1
b
, 1
c
) the results for each iteration step

4Remember: Within the NRL-TB parametrization only up to two atom-types can be treated!
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are presented, which structure will be discussed later in this section. If convergence is
reached the band energy, the double countings and the total energy of the system (all
in eV) are displayed (for more theoretical details see sections 2.4, 2.5 and 2.6). Finally
the calculation of this q-vectors is finished and the number of remaining q-vectors for
the calculation can be extracted from the output.
Now let us take a more detailed look into the structure of the output for each iteration

step5. After specifying the iteration step the computational times for the two most time
consuming calculation steps are displayed. These steps are the creation of H0(k) within
the Slater-Koster scheme by exploiting the (gen.) Bloch theorem and the diagonalization
of the full Hamiltonian for one k-point. Usually the diagonalization step will be the
most time-consuming part of the code, in particular for larger systems. In the case
of a spin-spiral calculation the rotation due to the q-vector has to be excluded before
constructing the magnetic part (for more details see appendix A.2). In this case the
cartesian components of the magnetic (net-)moment in the d-orbitals without this q-
rotation is displayed for each basis atom. This output is very useful to analyse occurring
problems within a spin-spiral calculation and helped me a lot during debugging.

################################################
Iterationstep: ** 1 **
Magnetic d-moment (x,y,z) without consideration

of spiral-rotation for each basis atom:
1 0.00000 0.00000 2.50000

create_Hmagnetic: H_mag is fully occupied!
###########################
Time for creating H0: 0.00030000 s
Time for one diagonalization: 0.00040000 s
###########################

|||||||||| Diagonalization for all k-points done!
Fermi energy (rough) : 1.98211891eV
Fermi energy within Newton method: 1.98287868 eV after 5 iterations
Determine the new mixed charges and moments:
** Mulliken charge | m_x | m_y | m_z | Theta | Phi **
1 8.00000 0.00000 0.00000 2.50939 0.0000 0.0000

RMS in SC: 0.00939
# Hits in SC: 3 of 4
Time for iteration 1 : 16.87670000 s

################################################

The diagonalization of the Hamiltonian for all k-points of the k-mesh can take some
time. Therefore a bar (||||||||||) consisting of single stripes is used to display the

5The output in the case tb_sc=F is a little bit different. It will not be explained here.
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progress in this diagonalization. Each of this stripes corresponds to a 10%-progress,
therefore the diagonalization for all k-points is finished after 10 stripes.

With the help of all calculated band energies the Fermi energy can be calculated. The
first displayed value is only a roughly determined value, which is used as start value
within a Newton-method to determine a precise value of the Fermi energy. The number
of iterations required by the Newton method are also shown. This number should not
exceed 200 iteration steps, otherwise I recommend to increase the Fermi smearing (see
keyword FERM_BROD in inputcard) to simplify the convergence. The self-consistency
is based on the Mulliken-charges (LCN!) and the magnetic d-(net-)moments of each
basis atom. These values are displayed for each iteration step in following order: After
specifying the basis atom, the Mulliken-charge and the cartesian components of the
magnetic moments are given. At last the angles Θ and φ are displayed (see fig. 2.10).
In the special case of BLO_WAVE=T and NC_IN_UC=T the angles only represent the phase
shifts, as discussed in section 3.7!

After each iteration step the root-mean-square value of the vector containing the
difference between the old and new self-consistent variables (i.e. the Mulliken-charges
and d-moments of each basis atom) is displayed. The number of self-consistent variables
fulfilling the convergence condition and the necessary number to obtain convergence are
displayed as Hits in SC. Finally the computational time of each iteration step is shown.

Up to now the main part of the JuTiBi code is executed and only some optional cal-
culations as the DOSs or the band structure can be performed. For the DOS calculation
the output on the screen is limited to the following:

##########################################
# Start calculating DOS properties #
##########################################

### Fully integrated DOS: 17.79295 | theoretical: 18
WARNING: Integrated DOS not very accurate!
To be sure you can increase variable faclor!
####### Calculation of the partial DOSs (majority spin channel):

|||||||||
####### Calculation of the partial DOSs (minority spin channel):

||||||||| DOS-calculation finished!

Within the calculation of the Total DOS the integrated DOS will be also determined.
The integrated DOS should be approximately the total number of bands. However,
using the Lorentzian functions leads to some small mistake in the integrated DOS. If
the difference between the theoretical and the calculated values is larger than 0.1 a
warning message appears as in the above example. To improve the calculated values one
can play with the properties of the DOS in the inputcard. However, note that these
properties are very strongly linked to each other, therefore finding an optimal input
could be difficult (see section 5.4).
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In the case SPINLOG=T and DOSORBAT=T the DOS in each spin-channel for each orbital
and atom will be calculated. To follow the progress of these calculations progress bars
as in the case of the diagonalization are used. Note that the DOS are saved into external
files, which are explained in section 4.2 of this chapter.

Finally the band structure of the system along a defined high-symmetry way in the
reciprocal unit cell can be calculated. Note that this band structure can be only cal-
culated for the last converged values of Mulliken-charges and magnetic moments! The
defined k-paths are displayed and an additional progress bar is used to follow the progress
of the diagonalization routine.

#################################
# Calculation of band structure #
#################################
READ IN : k-way (in units of 2*pi (1/a,1/b,1/c))
0.500000000000000 0.000000000000000E+000 0.000000000000000E+000 ->
0.500000000000000 0.500000000000000 0.000000000000000E+000
0.500000000000000 0.500000000000000 0.000000000000000E+000 ->
0.500000000000000 0.500000000000000 0.500000000000000
0.500000000000000 0.500000000000000 0.500000000000000 ->
0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000
0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000 ->
0.500000000000000 0.000000000000000E+000 0.000000000000000E+000

||||||||||| Calculation of band structure finished!

If everything worked out, the code quits without any error message and the following
lines should be visible in the output:

####################
# JuTiBi finished! #
####################

4.2 External files

This section discusses the structure of the external files created by the JuTiBi code
so far. Each file contains a header explaining briefly the structure of the file. Not all
data calculated within the JuTiBi code is written out into files, therefore for some user
purposes the code has to be modified.
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4.2.1 Properties of the lattice structure

The constructed k-mesh and the weights of the k-points can be found in the file kmesh.
dat. If the irreducible part of the k-mesh is calculated (IrrBZ=T), only the k-points
inside this irreducible part are stored in this file. Otherwise all k-points are stored. I
show some small section of this file:

0.13937282 0.13937282 0.00000000 0.00300000 12
0.15679443 0.15679443 0.00000000 0.00300000 12
0.17421603 0.17421603 0.00000000 0.00150000 6
0.03484321 0.01742160 0.01742160 0.00600000 24
0.05226481 0.03484321 0.01742160 0.01200000 48
0.06968641 0.05226481 0.01742160 0.01200000 48

The first 3 columns are the cartesian components kx, ky and kz of the k-points in units
of 2π. The lattice constants are contained in the k-points in the form 1

a
, 1
b
, 1
c
. The 4th

column is the weight of the k-points, which is not directly used in the code. Instead the
degeneracy of the k-point displayed in the 5th column is used in integrations over the
k-mesh. Note that the degeneracies are all 1 in the case of IrrBZ=F!

The file shells_neighbours.dat contains the created neighbour-shells for all basis
atoms of the lattice. Therefore this file can be used to plot the real-space structure
of the lattice. The structure of the file is as follows:

############## Basis atom: 1
1 0.00000000 0.00000000 0.00000000 0.00000000
2 -0.50000000 -0.50000000 -0.50000000 0.86602540
3 0.50000000 -0.50000000 -0.50000000 0.86602540
4 -0.50000000 0.50000000 -0.50000000 0.86602540

For each basis atom (specified by Basisatom:...) the neighbour shells are presented.
The number in the first column denotes the neighbour of the basis atom. The next
three columns are the cartesian components of the bonding vector in units of the lattice
constant a (therefore the fraction b

a
and c

a
is considered). The last column contains

the distances in units of a from the central atom of the cluster. Note that each cluster
is sorted in ascending order by the distance (and then the z-, y- and at last the x-
component)!

4.2.2 Charges

The charges of the system are stored in the two files charges.dat and conv_charges.
dat. The first file contains all elements of the density matrix (see eqs. 2.47, 2.48 and
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2.54) for each iteration step and each q-point (if BLO_WAVE=F q = 0 is used in the
files). However, usually the file conv_charges.dat contains enough informations for
the user. In this file all converged charges and magnetic moments (both Mulliken- and
net-charges and moments) are stored for all q-vectors. Let us first take a look into the
file charges.dat:

#q-vector (if any): 0.000000 0.000000 0.000000
#Iterationstep: 1
#(net-) charges:

1 1 1 0.135803
1 2 1 0.047178
1 3 1 0.060714
1 4 1 0.050306
...
#Mulliken-charges:

1 1 1 0.245466
...
#cross-charges:

1 1 0.000000 0.000000
...

The elements of the density matrix are stored in following order for each q-vector
and each iteration step. First the spin-, orbital and atom-resolved net-charges are saved
into the file, then the Mulliken-charges are stored. Afterwards the orbital- and atom-
resolved cross-charges (both the Mulliken- and net- ones) are listed. In the case of the
net- and Mulliken-charges the first column represents the spin-channel with ↑:1 and ↓:2,
the second column stands for the kind of orbital6 and the third column contains the
basis atom. Finally the value of the charge (in e) is saved into the last column. In the
case of the cross-charges there is no column containing the spin-channel, but all other
columns show the same structure as explained above.

###### Atom 1
### Charges:

# Net-charges (total, s, p ,d) : 6.94401 0.26788 0.31403 6.36210
# Mulliken-charges (total, s, p ,d) : 8.00000 0.48691 0.78831 6.72477
### Net-Magnetic Moments (total, x, y, z) :

# s-moment: 0.02378 0.00000 0.00000 -0.02378
# p-moment: 0.04397 0.00000 0.00000 -0.04397
# d-moment: 2.64127 0.00000 0.00000 2.64127
------------------------------------------------
61 : s, 2 : px, 3 : py, 4 : pz, 5 : dxy, 6 : dxz, 7 : dyz, 8 : dx2−y2 , 9 : dz2
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# total moment: 2.57352 0.00000 0.00000 2.57352
### Mulliken-Magnetic Moments (total, x, y, z) :

# s-moment: 0.02955 0.00000 0.00000 -0.02955
# p-moment: 0.06823 0.00000 0.00000 -0.06823
# d-moment: 2.43361 0.00000 0.00000 2.43361
------------------------------------------------

# total moment: 2.33582 0.00000 0.00000 2.33582

The file conv_charges.dat contains the converged charges and magnetic moments of
each q-vector. First all charges and moments are sorted by the basis atoms. The net-
charges and Mulliken-charges are given in following order: first the total charge, then
the charge in the s-, p- and d-orbitals is displayed. The magnetic moments are located
under these charges. First the magnetic net-moments in the s-, p- and d-orbitals are
given in units of µB, then the total magnetic net-moments are displayed. For all these
moments the first column represents the absolute value, whereas the second to the fourth
column contain the corresponding magnetic moments in cartesian coordinates (i.e. the
x-, y- and z-component). Finally the magnetic Mulliken-moments are displayed in the
same structure as the net-moments.

In addition the Mulliken-charges (LCN!) and the exchange energies (Stoner model)
needed for the self-consistent TB-scheme of the JuTiBi code are saved into the file
TB_SC_values.dat in each iteration step in order to use them as start values in follow-
ing calculations (see section 3.8).

SCVALUES

ITER_ 2
1 0.1204506014 0.1204506014 1.2045060135
1 8.0000000000 8.0000000000

ITER_ 3
1 0.1208823931 0.1208823931 1.2088239309
1 8.0000000000 8.0000000000

ITER_ 4
1 0.1212880679 0.1212880679 1.2128806791
1 8.0000000000 8.0000000000

It is very important to leave the structure of this file unchanged, otherwise the data
can not be imported for another self-consistent calculation as new start values! SCVALUES
works as keyword to read in the data and the Nth-iteration step is denoted by ITER_N.
For each iteration step the exchange energies and Mulliken-charges of each basis atom
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are displayed. The structure is exactly the same as in the corresponding parts of the
inputcard (see sections 3.7 and 3.8). Therefore these values can be also copied into the
inputcard to start a new self-consistent calculation with pre-converged results.

4.2.3 Energies of a spin-spiral

By performing a spin-spiral calculation (BLO_WAVE=T) along a high-symmetry q-way
the file Eq.dat containing the q-dependent energies is created. This file consists of 9
columns, containing all relevant energies of the system. In the first column one can
find the length-parametrized value of the q-way and the next three columns describe the
cartesian components of the q-vector in units of 2π · ( 1

a
, 1
b
, 1
c
). In the 5th column the

band energy of the system (see eq. 2.34) for the corresponding q-vector is saved, whereas
the total energy is located in the 6th column. The double-counting contributions are
listed in the next three columns in following order: first the double counting coming
from the local charge neutrality (eq. 2.42), then the double counting of the Stoner model
(eq. 2.58) and finally the contribution arising from the constraint of the Θ-angle of the
magnetic moments. Note that all energies are given in eV!

If no spin-spiral is taken into account the energies can be found in the output on the
screen as explained in section 4.1. If a spin-spiral is considered and the q-points are not
located along a defined high-symmetry way but rather inside the reciprocal unit cell the
relevant data is saved into the file jenerg.dat. This file will be explained later in this
section.

During my work of my diploma thesis [16] it was necessary to exploit a 1st order
perturbation theoretical treatment of SOC for a spin-spiral system to calculate the
Dzyaloshinskii-Moriya interaction. In total three files are created if the user decides to
treat SOC in 1st order perturbation theory (see keyword SOC_PERTU in chapter 3). These
three files are named as Eq_1storder_SOC.dat, Eq_1storder_SOC_layer_resolved.
dat and Eq_1storder_SOC_layer_orbital_resolved.dat. I am going to explain only
the first file more detailed, whereas the other files will be only briefly discussed.

In the file Eq_1storder_SOC.dat the SOC-contribution to the energy calculated within
1st order perturbation theory (see eqs. 2.84 or 2.88) is saved for all q-points along a de-
fined q-way. The first column is again the length-parametrized value for the q-way
and the three following columns display the q-vector in cartesian coordinates. The
last column contains the energy-contribution in eV coming from the 1st order SOC
treatment. The files Eq_1storder_SOC_layer_resolved.dat and Eq_1storder_SOC_
layer_orbital_resolved.dat contain the layer-resolved (respectively the layer- and
orbital-resolved) analysis of the 1st order SOC-contribution to the energy. Interested
users should take a look into the header of the file to understand its structure.
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4.2.4 Density of states

I recommend to take a look into the description of the subroutine calc−DOS in the sec-
tion 6.2. There the way of calculating the DOS is described in detail. The total DOS
and the partial DOS are saved into following files depending on the settings for SPINLOG
and SOCLOG:

spinlog=false: Total DOS saved in Total_DOS_up.dat and the partial DOS
in DOS_atom_orbital_resolved.dat

spinlog=true, soclog=false: Total DOS saved depending on the spin-channel
in Total_DOS_up.dat and Total_DOS_down.dat, the partial DOS in DOS_atom
_orbital_resolved_up.dat and DOS_atom_orbital_resolved_down.dat

soclog=true: Total DOS saved in SOC_Total_DOS.dat, and the partial DOS
depending on the spin-channel in SOC_DOS_atom_orbital_resolved_up.dat and
SOC_DOS_atom_orbital_resolved_down.dat

...
11.2446904888 0.1047001324
11.3293397442 0.0825157774
11.4139889997 0.0581123860
11.4986382551 0.0515929673
...

First I will explain the files containing the Total DOS of the system. The structure of all
these files is the same: in the first column the energies7 of the constructed energy mesh for
the DOS calculation are saved and in the second column the DOS is listed in arbitrary
units. In the case of soclog=false the file Total_DOS_up.dat contains the DOS in
the majority spin-channel, whereas Total_DOS_down.dat contains the values for the
minority spin-channel. If a non-magnetic calculation with spinlog=false is performed
only the file Total_DOS_up.dat is created. Note that in the case of soclog=true the
file SOC_Total_DOS.dat does not separate between the spin-channels.
The partial DOS is calculated in the case DOSORBAT=T and saved into the above listed

files depending on soclog and spinlog. The structure of these files is in all cases
the same. In the first column the energies of the energy-mesh are listed and then the
partial DOS for each orbital and each atom is displayed. The next 9 columns display
the densities of states of the first basis atom in the used orbitals8, and behind that the
partial DOS of the second basis atom etc. is presented. As in the above explained case
of the total DOS the files with the suffix _up and _down contain the partial DOS of the

7in eV
81 : s, 2 : px, 3 : py, 4 : pz, 5 : dxy, 6 : dxz, 7 : dyz, 8 : dx2−y2 , 9 : dz2
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majority and minority spin-channel. The prefix SOC_ denotes the files containing the
DOS in the case of soclog=T.
Note that the above explained structure of the files containing the partial DOS is

different in the case of LOGSPEC=T. In this case the partial DOS of only one specific basis
atom and orbital is calculated. Therefore only one additional column containing this
specific partial DOS is displayed behind the column listing the energies of the energy-
mesh.

4.2.5 Band structure

The band structure of the system is saved in following files depending on the settings for
SPINLOG and SOCLOG. If SOCLOG=T the file SOC_bandenergies.dat is used to save the
energies along the high-symmetry k-way. Note that in this case the energies can not be
strictly separated in the majority and minority spin-channel. In the case SOCLOG=F the
bands in the majority spin-channel are saved into the file bandenergies_up.dat and the
minority spin-bands are saved into bandenergies_down.dat. In the case of SPINLOG=F
only the file bandenergies_up.dat is used to store the band energies. All files have the
same structure: the first column contains the length-parametrized k-way, whereas the
next 3 columns show the corresponding k-point of the k-way in units of 2π · ( 1

a
, 1
b
, 1
c
).

The last column displays the energy of this k-point. Note that the different bands are
stored one after another in rows.

...
0.0000000000 0.5000000000 0.0000000000 0.0000000000 -2.2974698615
0.0000000000 0.5000000000 0.0000000000 0.0000000000 -2.2974698615
0.0000000000 0.5000000000 0.0000000000 0.0000000000 -2.2400692452
0.0000000000 0.5000000000 0.0000000000 0.0000000000 -2.2400692452
0.0000000000 0.5000000000 0.0000000000 0.0000000000 -2.2390131055
0.0000000000 0.5000000000 0.0000000000 0.0000000000 -2.2390131055
...

If a fat-band representation is switched on (see keyword FAT_BANDS in chapter 3), the
weights of the corresponding eigenvectors are saved in additional columns. Interested
users should take a look into the header of the file to gain specific information.

4.2.6 Miscellaneous

The last two files jenerg.dat and fermi_surface.bxsf can be used as input in external
programs to maintain the Heisenberg exchange-coupling parameters or the Fermi surface
of the system. I will only give a brief description of the structure of the files.
The file jenerg.dat contains all information to obtain the Heisenberg exchange-

coupling parameters within a linear least square method. This file can be used as input
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for the Python program plot_Jij.py written by D. Bauer.

# This file contains the total energies in eV
# in dependence of the q-vectors: (q_x, q_y, q_z, E(q))
# The q-vectors are in units of 2*pi, but the
# the lattice constants a, b and c (in A) are contained.
# The cartesian representation is used.
# The Bravais vectors of the system in # cartesian representation:
# -1.4350000000 1.4350000000 1.4350000000
# 1.4350000000 -1.4350000000 1.4350000000
# 1.4350000000 1.4350000000 -1.4350000000
# Cone angle: 1.57079632679490
# Magnetic moments: 2.50000000
0.0000000000 0.0000000000 0.0000000000 0.1118937017
0.0348432056 0.0348432056 0.0000000000 0.0835111066
0.0696864111 0.0696864111 0.0000000000 0.0102684273

Beside the information about the Bravais vectors (in units of a, b and c), the cone
angle of the spin-spiral and the absolute value of the magnetic moment, the q-dependent
band energies are displayed in the 4th column for each q-point of the q-mesh. The q-
points are listed in cartesian components in units of 2π in the first three columns.

The file fermi_surface.bxsf can be exported into the program XCrysDen to visu-
alize the Fermi surface of a 3-dimensional system9. The structure of this file is given
on the webpage of the XCrysDen code. The users interested in more details of this file
should take a look into this reference [50]. Additionally in the newest version three files
basics.berrycurv, hopping.berrycurv and charges.berrycurv are written out, if a
Berry curvature analysis with the external code by Hongbin Zhang should be carried
out. The correspondin code of H. Zhang and a short documentation can be also found
in the JuTiBi package.

9The JuTiBi code does not provide any files to calculate the Fermi surface of a 1- or 2-dim. system!
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5 Tutorial for the JuTiBi code

The tutorial for the JuTiBi code should help the user to get used to the inputcard
and learn how to perform the basic calculations. Most of the exercises and examples
are chosen to be as simple as possible to allow a smooth introduction. However, some
of the examples are a little bit more tricky and can show numerical difficulties. These
examples are mostly called "exercises for experts". These cases should give the user an
idea, what one has to take care of.

The user should learn how to calculate band structures of non-magnetic and magnetic
systems, including the procedure of self-consistency. Calculating the DOS, the magneto-
crystalline anisotropy energy (MCA) and performing non-collinear magnetic calculation
with the code.

I am assuming that the user proceeds linearly through this chapter. Therefore in later
exercises some requirements from the first exercises are needed.

5.1 Get JuTiBi to run

First you should get the JuTiBi code running. Copy the folders containing the JuTiBi
code into a folder of your choice. A complete list of all files contained in the folder
of the JuTiBi code can be found in the appendix F. Then use a shell and change into
the JuTiBi-directory. To compile the code type in make1. To compile the code you
need a Fortran90 compiler, as f. ex. ifc or ifort. I have tested the code only for ifc
and ifort so far, therefore I would recommend to use them if possible. In addition a
Lapack/BLAS library (preferably the MKL one; see webpage [52]) has to be installed on
your computer.
To get more details about the used Compilers, paths etc. take a look into the makefile.

If the code is not being compiled on your computer, probably you have to change the
path of the Lapack libraries etc. in the makefile. Congratulations if you were successful
in compiling the JuTiBi code. You have passed the possibly largest obstacle of working
with the code ;)

1Additional flags as "make mac" or "make iff" can be used to use alternative paths for the MacOSX
or the IFF Desktop PCs. The flag "make clean" can be used to erase all . o and . mod files in the
directory. For more details take a look into the makefile.
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5.2 General remarks

The inputcard has to be used to assign the system you want to compute. I will not
explain every detail of setting the inputcard for the particular exercises, but only the
most important points. Therefore I strongly recommend to read the chapter 3 before
and when working through the tutorial. However, for users who only want to calculate
the systems of the tutorial the directory inputcards_for_Tutorial contains "ready-
to-compute" inputcards for each exercise in the tutorial.
Additionally the file SKP_input_papakonst has to be used occasionally to assign the

correct Slater-Koster parameter sets from the webpage [4] to the system. For more
details see section 3.6. Again the necessary files to compute the exercises of the tutorial
can be found in the directory inputcards_for_Tutorial.

5.3 Band structure calculation

In this section you should learn how to calculate the band structure of a simple system.
First we should focus on a non-magnetic system because no self-consistency is needed
there to obtain the band structure. Afterwards you should perform a calculation for a
simple magnetic system to get used to the self-consistent scheme.

5.3.1 Non-magnetic system: fcc Cu

Goals:

• defining lattice structures

• working with parameter sets of the NRL-TB parametrization

• performing band structure calculations along a defined high-symmetry k-way

files: inputcard_Cu.dat, parameter_set_Cu

As non-magnetic material we will choose copper in a fcc-lattice structure with a lat-
tice parameter of a = 3.61 Å. First you should import the parameter set of Cu from the
webpage [4] and paste it unchanged into the file SKP_input_papakonst. Remember that
the parameter set has to be put under the keyword STA_READ2 to define the first atom
type of the system. The second atom type, which would be defined with a parameter
set under the keyword STA2_READ can be an arbitrary set, because it will be not used in
this example.

2Note that this keyword has to be unique in the file SKP_input_papakonst! For more details see
section 3.6.
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Then you should enter the lattice structure in the inputcard, which should look like
this:

ALATBASIS= 3.61d0 1.0d0 1.0d0

BRAVAIS
0.0d0 0.5d0 0.5d0
0.5d0 0.0d0 0.5d0
0.5d0 0.5d0 0.0d0

Specify the number of k-points to 8000 in the full BZ, which is enough for Cu. You
can use the irreducible part of the k-mesh.

BZDIVIDE= 20 20 20
KPOIBZ= 8000
IrrBZ= T

The number of valence electrons in Cu is 11, therefore enter NUMELUC=11 and set (the
start-values of) the Mulliken charge and the reference charges to 11.0:

CHARGE_0
1 11.0d0 11.0d0

To perform a non-magnetic calculation without self-consistency switch SPINLOG=F and
TB_SELFC=F. To obtain the correct double countings you should also set the exchange
energies to zero to be consistent. Finally you can specify the k-way by defining the start-
and end-points of the separate k-paths. For a way along Γ→ X → W → K → L→ Γ
it should be as follows:

NUMWAYS=5

NUMPTSWAY CREATEWAY
100 0.0 0.0 0.0 1.0 0.0 0.0
100 1.0 0.0 0.0 1.0 0.5 0.0
100 1.0 0.5 0.0 0.75 0.75 0.0
100 0.75 0.75 0.0 0.5 0.5 0.5
100 0.5 0.5 0.5 0.0 0.0 0.0

Now run the code with JuTiBi.exe and wait until the calculation is finished. You
should take a look into the output on the screen and try to understand it with the help
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Figure 5.1: Band structures of fcc-Cu (a) and bcc-Fe (b) along high symmetry k-ways
using 8000 k-points. The Fermi energy lies at zero.

of chapter 4. The interesting data of the band structure is now contained in the file
bandenergies_up.dat. Plot the first column against the 5th column (see subsection
4.2.5 for more details). The band structure should look like in figure 5.1(a). Note that
all eigenenergies saved in the files containing the band energies are shifted already by
the Fermi energy.

5.3.2 Magnetic system: bcc Fe

Goals:

• using the self-consistent TB-scheme

• output of "simple" magnetic system
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files: inputcard_Fe.dat, parameter_set_Fe

As a magnetic system we should compute the band structure of bcc-Fe. Use the param-
agnetic GGA parameter set for the NRL-TB parametrization [4] and enter the Bravais
vectors of a bcc-lattice with a lattice parameter of a = 2.87 Å. 8000 k-points are enough
to describe the band structure. The irreducible k-mesh can be used to spare computa-
tional time. Set the number of electrons, the Mulliken charge and the reference charge to
8. Use an start-value of about 1.1 eV for the exchange splitting with a Stoner parameter
of I = 0.96 eV3:

XC_ENERGY
1 0.11d0 0.11d0 1.1d0

STON_PARA
1 0.096d0 0.096d0 0.96d0

Switch on the self-consistent scheme by setting TB_SELFC=T and specify the type of
mixing (more details in section 3.8). I recommend to use Broyden mixing, but you
can also use linear mixing, which is in particular helpful for hardly converging systems.
Now start JuTiBi and observe the convergence of the magnetic moment. The magnetic
moment converges to a value of about 2.6µB.

** Mulliken charge | m_x | m_y | m_z | Theta | Phi **
1 8.00000 0.00000 0.00000 2.64127 0.0000 0.0000

Keep in mind that this is the magnetic net-moment in the d-orbitals4! To see the
physically more meaningful magnetic Mulliken-moment take a look into the file conv_
charges.dat, which is explained in detail in section 4.2.2. As one can see a value of
2.3µB is in nice agreement with ab-initio calculations.

### Mulliken-Magnetic Moments (total, x, y, z) :
# s-moment: 0.02955 0.00000 0.00000 -0.02955
# p-moment: 0.06823 0.00000 0.00000 -0.06823
# d-moment: 2.43360 0.00000 0.00000 2.43360
------------------------------------------------

# total moment: 2.33582 0.00000 0.00000 2.33582

The band structure decomposed into the majority and minority spin bands is displayed
in fig. 5.1(b). It would be good if you make a safety copy of the file TB_SC_values.dat,
because we can use it for later exercises.

3in the d-orbitals
4This is the only quantity beside the Mulliken charge, which enters the self-consistency.
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It is also enlightening to change a little bit the start-values of the exchange energies and
observe the convergence behaviour within Broyden mixing. In some cases the Broyden
mixing can lead to unphysical results, however usually this problem can be solved by
using more linear pre-iteration steps (N_INIT_LIN) before using Broyden mixing.5

Exercises for "experts": It could be interesting to calculate the band structure of
Cu within a magnetic self-consistent calculation. Then you should start with a (not too
large) exchange splitting of about 0.5 eV and a Stoner parameter of I = 0.73 eV (see [48])
and observe if the magnetic moment converges against zero. This is indeed the case in
Cu, however in fcc-Pt (use the parameter set from [4]) it is much more complicated. For
an equilibrium lattice constant of a = 3.92 Å and a Stoner parameter of I = 0.58 eV the
system converges to a small magnetic moment with a magnitude of about 0.01µB. The
exact value depends on the number of k-points and one can observe the behaviour that
the moment becomes smaller for more k-points. But the convergence is rather bad. This
is an indication that the Stoner parameter is chosen a little bit too large. However, in
an investigation of my diploma thesis this Stoner parameter leads to reasonable results
compared to corresponding ab-initio results (see fig. 4.3 in [16]).

5.4 Density of states (DOS): bcc Fe

Goals:

• use (pre-)converged start values

• calculating the DOS (total, partial)

• get a feeling for the quantities used to calculate the DOS

files: inputcard_Fe_DOS.dat

In this exercise you should calculate the DOS of the bcc-Fe system. I hope you saved the
file TB_SC_values.dat of the bcc-Fe band structure calculation.6 The converged values
for the bcc-Fe calculation are saved under the last iteration step. Therefore something
like the following can be found in the file:

ITER_ 7
1 0.1267807628 0.1267807628 1.2678076284
1 8.0000000000 8.0000000000

5Unfortunately this is not valid always. In some cases the linear pre-iteration steps could lead to a
more difficult convergence. I do not know the origin of this behaviour yet.

6If not you can also do this exercise, but you will miss the first goal of this exercise.
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In above case the 7th iteration gave me the converged result for the exchange energies.
Therefore to calculate the bcc-Fe system, one can use these converged results to spare
some computational time7. To do this you can either copy this converged values into
the inputcard as new start values, or you use RESTA_SC=T and RESTA_IT=7.

Now you need to specify the properties for the DOS calculation. First we want to
calculate also the partial DOS, therefore switch DOSORBAT=T. Then specify the width of
the lorentzian functions, the factor α and the number of energy points for the energy
mesh (see subroutine calc−DOS in section 6.2). A good choice to obtain a nice smooth
DOS (see left panel of fig. 5.4) around the Fermi energy is as follows:

NUMENDOS=5000
LORWIDTH=0.1d0
FACLOR= 20

I would recommend to play a little bit with these quantities. They are all coupled
and therefore it is good to get a feeling how to obtain a reasonable look of the DOS. A
much too small width of the Lorentzians leads to a very spiky, not very meaningful DOS,
whereas a too large width smears out all interesting physical properties of the DOS. In
the right panel of fig. 5.4 one can see the DOS for this extreme cases compared to the
choice in the left panel of fig. 5.4.

7In this particular case it does not give you a big advantage. However, for larger systems it could be
very handy.
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5.5 MCA of an Fe monolayer

Goals:

• performing surface calculations

• using SOC in JuTiBi

• calculating the MCA and the angular moments

files: inputcard_MCA_Fe_monolayer_x.dat and inputcard_MCA_Fe_monolayer_z.dat

In this exercise you should compute the magneto-crystalline anisotropy energy (MCA)
of a free standing (unrelaxed) Fe(001)-monolayer. First you should enter the lattice
structure, which should look as follows:

ALATBASIS= 2.87d0 1.0d0 1.0d0

BRAVAIS
1.0d0 0.0d0 0.0d0
0.0d0 1.0d0 0.0d0
0.0d0 0.0d0 0.0d0

Set the number of k-points to 40000 and be aware to set the number of k-points along
the z-direction to 1 and not zero. You should use such a large amount of k-points,
because the MCA is very low in energy and therefore we need a very precise numerical
description. To calculate the MCA we have to switch on SOC, therefore the full k-mesh
has to be used instead of the irreducible part.

BZDIVIDE= 200 200 1
KPOIBZ= 40000
IRRBZ= F
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The SOC parameters have to be entered in the table-like structure explained in section
3.5. A SOC parameter of 0.06 eV in the d-orbitals and 0.18 eV in the p-orbitals8 is
reasonable [16].

-----------------|---------------------------------------
ZATOM #ORB | s_Orb | px_Orb py_Orb pz_Orb |
45.0d0 9 | 1 | 1 1 1 |
-----------------|--------------------------------------|
SOC-Parameter: | --- | 0.18d0 |
---------------------------------------------------------------
dxy_Orb dxz_Orb d_yz_Orb d(x2-y2)_Orb d(z2-r2)_Orb |

1 1 1 1 1 |
---------------------------------------------------------------|

0.06d0 |
----------------------------------------------------------------

To switch on SOC set SOCLOG=T. You should use the non-collinear scheme with
NC_IN_UC=T and NCMAG=T to calculate the MCA of a system, because it is much bet-
ter tested than the case SET_GAXIS=T (for more details see section 3.7). Start with
some appropriate start-values for the exchange energies (f.ex. 1.1 eV) and switch on
self-consistency.
Now to calculate the MCA you have to perform two calculations, one with the mag-

netic moment along the z-direction and the other with the magnetic moment along the
x-direction. To set the magnetic moment along the x-direction use a Θ-angle of 90◦:

NC_ANGLES
1 90.0d0 0.0d0

For the calculation with the moment along the z-direction the converged net-moment,
the total energy and the angular moment9 should be as follows:

** Mulliken charge | m_x | m_y | m_z | Theta | Phi **
1 8.00000 0.00000 0.00000 3.60166 0.0000 0.0000

###### Energy analysis:
Band energy in eV: 0.83670
Double counting corrections in eV:
LCN: 0.00000
Stoner model: 3.11161
Constraint for mag. moments: 0.00000

8The SOC parameter in the p-orbitals plays a minor role for the MCA.
9The angular moment can be found in the file conv_charges.dat.
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**Total energy**: 3.94830

### Angular moments (total , x , y, z) :
# total ang. moment: 0.17849 0.00000 0.00000 0.17849

For the calculation along the x-direction the code should yield following results:

** Mulliken charge | m_x | m_y | m_z | Theta | Phi **
1 8.00000 3.60182 0.00000 0.00000 90.0000 0.0000

###### Energy analysis:
Band energy in eV: 0.83770
Double counting corrections in eV:
LCN: 0.00000
Stoner model: 3.11189
Constraint for mag. moments: 0.00000

**Total energy**: 3.94959

### Angular moments (total , x , y, z) :
# total ang. moment: 0.13163 0.13163 0.00000 0.00000

Finally you should calculate the difference between the two total energies to obtain
the MCA, which is about 1.3 meV in this system. Note that the angular moment along
the easy axis direction is larger than along the heavy axis as it should be.

Exercises for "experts": For interested users I recommend to calculate the MCA
of the L10-FePt structure in dependence of the lattice constant ratio c

a
. The results

of the JuTiBi code are discussed in my diploma thesis [16]. If you are not sure how
to implement different types of basis atoms you should first take a look into the next
exercise.

5.6 Using non-collinear magnetism

The final exercises are all about calculations of non-collinear magnetic systems. First you
will calculate the magnon dispersion of bcc-Fe, then some calculations in 1-dimensional
systems should be performed.

5.6.1 Spin-Spiral calculations (1): bcc Fe

Goals:
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• using the gen. Bloch theorem

• calculating magnon dispersions

• learning how to perform force theorem calculations

files: inputcard_bccFe_force_theorem.dat and inputcard_bccFe_self_consistent.
dat

In this exercise you should calculate the magnon dispersion of bcc-Fe. I am assuming
that you have done the exercise of the calculation of the bcc-Fe band structure. There-
fore entering the lattice structure, preparing a self-consistent calculation etc. should be
known. It is enough to use 8000 k-points in the full Brillouinzone, but note that you
have to use the full k-mesh instead of the irreducible one. Remember that you have
to set SOCLOG=T even for a non-collinear calculation without SOC, but you should set
the SOC parameters to zero in this case. Switch on NCMAG and BLO_WAVE and specify a
cone-angle for the spin-spiral behind the keyword BLO_THETA. I recommend to use 30◦

in this exercise. Then specify a q-way for the magnon dispersion. In the below example
the high-symmetry way Γ→ N → P → Γ→ H → N is used.

LOG_Q_WAY=T
NUMQWAYS=5

NUM_QWAY CREA_QWAY
10 0.0d0 0.d0 0.d0 0.5d0 0.5d0 0.d0
10 0.5d0 0.5d0 0.d0 0.5d0 0.5d0 0.5d0
10 0.5d0 0.5d0 0.5d0 0.d0 0.d0 0.d0
10 0.d0 0.d0 0.d0 1.0d0 0.0d0 0.0d0
10 1.0d0 0.0d0 0.0d0 0.5d0 0.5d0 0.0d0

If Θ 6= 90◦ the Θ-angle can change during the self-consistency10. Usually it will change
only a little bit for the larger q-values and this is not a problem. However, you should
keep in mind that self-consistent spin-spiral calculations with cone-angles Θ 6= 90◦ (or
no-planar spirals) could lead to problems.

Now run the calculation and plot the 1st column of the file Eq.dat against the 6th
column, which contains the total energies. Then you should obtain the black curve with
the triangles in fig. 5.2 as magnon dispersion. Be aware that this calculation takes some
time (∼ 1h). If you do not want to spend so much time reduce the number of q-points
and/or k-points. The magnon dispersion for a couple of Θ-angles can be observed in my
diploma thesis [16].
This calculation has consumed some computational time, because a self-consistent

calculation for each q-point had to be performed. However, there is a possibility to
10Unfortunately I realized that the Θ-constraint implemented into the JuTiBi code does not work for

the cone-angle of a spin-spiral. I have not yet found a possibility to avoid this problem.
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Figure 5.2: Magnon dispersion of bcc-Fe for a cone-angle of 30◦ and 90◦. The red curves
are the force theorem calculations, whereas the black curves are the results
of the self-consistent calculations. The hexagons display the result of the
spin-spiral with a cone-angle of 90◦.
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spare computational time by exploiting the force theorem (see section 2.9). In this case
you have to perform a self-consistent calculation for the ferromagnetic case first and use
the converged values for "one-shot calculations" with q 6= 0. The converged values for
q = 0 should be:

XC_ENERGY
1 0.1267807629 0.1267807629 1.2678076287

CHARGE_0
1 8.0d0 8.0d0

Now copy these values to the corresponding positions in the inputcard11 and switch
off self-consistency. Therefore only one iteration-step will be performed and you should
get the red curve in fig. 5.2 in a short time. As you can observe the force theorem is in a
satisfactory agreement with the self-consistent result especially in the region of smaller
q-values12. Even for a cone-angle of Θ = 90◦ the results of the force theorem calculation
are in nice agreement compared to the self-consistent result for smaller q-values (see
fig. 5.2). Therefore the force theorem approximation can be used for all spin-spiral
calculations without remorse.

5.6.2 Spin-Spiral calculations (2): Fe chain

Goals:

• performing calculations for 1-dim. structures

• learning the difference between a non-collinear calculation exploiting the gen. Bloch
theorem and performing a calculation in a magnetic super cell

• performing calculations with more than one basis atom

files: inputcard_genBT and inputcard_mag_unitcell

In the JuTiBi code you can describe spin-spirals within the gen. Bloch theorem, but
of course using a description in a magnetic supercell with manually defined magnetic
moments for each basis atom is also possible. In the section 2.8 these two methods are
explained in detail. Take also a look to the fig. 2.13. In this exercise you should treat a
free-standing mono-atomic Fe chain with both methods and test if they are equivalent
descriptions for a spin-spiral with a cone angle of 90◦ and q = 0.2513.

11Or use the method with RESTA_SC=T.
12In this region also the Θ-angle does not change within the self-consistent scheme.
13Therefore exactly the case in figure 2.13 should be calculated.
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First enter the lattice structure with a lattice constant of a = 2.22 Å:

ALATBASIS= 2.22d0 1.0d0 1.0d0

BRAVAIS
1.0d0 0.0d0 0.0d0
0.0d0 0.0d0 0.0d0
0.0d0 0.0d0 0.0d0

Specify the number of k-points along the x-direction to 400 and set it to 1 for the
other directions. For an 1-dimensional Fe structure the LDA parameter set yields the
better description. Therefore copy the LDA parameter set from the webpage [4] into
the file SKP_input_papakonst. Increase the cutoff-radius and the cluster radius in the
case of an error message like Increase Cutoff radius of Cluster generation. Now
perform a self-consistent calculation for the q=0.25 case by using the following input in
the inputcard. Remember that we perform a calculation for a single q-point, therefore
switch off LOG_Q_WAY.

BLO_WAVE=T
BLO_THETA= 90.0d0
BLO_Q= 0.25d0 0.0d0 0.d0

The converged values for the magnetic moment and the total energy should be as
follows:

** Mulliken charge | m_x | m_y | m_z | Theta | Phi **
1 8.00000 2.90316 0.00000 0.00000 90.0000 0.0000

**Total energy**: 4.14186

Now you should do the same calculation in the magnetic unit-cell. Therefore you need
to define 4 basis atoms and a lattice structure as displayed below:

ALATBASIS= 2.22d0 1.0d0 1.0d0

BRAVAIS
4.0d0 0.0d0 0.0d0
0.0d0 0.0d0 0.0d0
0.0d0 0.0d0 0.0d0
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CARTESIAN= F
BASATOMS

0.00d0 0.d0 0.d0
0.25d0 0.d0 0.d0
0.50d0 0.d0 0.d0
0.75d0 0.d0 0.d0

NUMBASIS=4

Note that in this case the basis vectors are defined in Bravais representation! Of
course one can also use again a Bravais vector (1, 0, 0) and use a 4-times larger lattice
constant a instead. To compare the energies with the calculation performed within the
gen. Bloch theorem you should take care to use the same k-point density. Therefore only
100 k-points should be used now. If you work with more than 1 basis atom following
entries have to be specified for each of these basis atoms: the table for the specification
of the orbitals14, the atom type (even if PAPA_BINA=F), the start values of the Mulliken
charge and reference charge, the start values of the exchange energies and at last the
angles to define the direction of the magnetic moments (even if NC_IN_UC=F ). Use the
same exchange energies and Mulliken charges for all basis atoms, because they are the
same due to symmetry. Only the directions of the magnetic moments should be chosen
such that you simulate a spin-spiral with Θ = 90◦ and q = 0.25, therefore:

NC_IN_UC=T
NC_ANGLES
1 90.0d0 0.0d0
2 90.0d0 90.0d0
3 90.0d0 180.0d0
4 90.0d0 270.0d0

Remember to switch of BLO_WAVE, because we are not exploiting the gen. Bloch theorem
in this case. Also take care to use the correct number of electrons per unit cell, which
should be 32 in this case!
Now start a self-consistent calculation and you should obtain following converged

values for the magnetic moments and the total energy:

** Mulliken charge | m_x | m_y | m_z | Theta | Phi **
1 8.00000 2.90316 0.00000 0.00000 90.0000 0.0000
2 8.00000 0.00000 2.90316 0.00000 90.0000 90.0000
3 8.00000 -2.90316 0.00000 0.00000 90.0000 180.0000
4 8.00000 0.00000 -2.90316 0.00000 90.0000 -90.0000

**Total energy**: 16.56743

Of course the total energy has to be divided by 4 and then you can see that both methods
are equivalent.
14Leave one line free between the tables!
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Figure 5.3: Structure of the Fe/Pt chain. The red atoms are the Fe atoms, whereas the
blue atoms represent the Pt atoms. The lattice parameter a is 2.22 Å.

5.6.3 Treating SOC in Spin-Spirals: FePt chain

Goals:

• include SOC in a 1st order perturbation theoretical treatment

• performing calculations with different types of basis atoms

files: inputcard_DMI_Fe_Pt_chain.dat

In the last exercise you learn how to add SOC in spin-spiral calculations, which can
be used to investigate the Dzyaloshinskii-Moriya interaction in non-inversion-symmetric
systems. The simplest periodical system with a broken inversion-symmetry is a free
standing zig-zag chain consisting of two different atom types. You should use Fe and Pt
as atom types. In fig. 5.3 you can extract the structural parameters.
Using two different atom types in the JuTiBi code can be realized by setting the

corresponding NRL-TB parameter sets under the keyword STA_READ for the first atom
type and STA2_READ for the second one. In this exercise use the GGA parameter set
for Fe and the LDA parameter set for Pt from the webpage [4]. Then specify the atom
type of each basis atom under the keyword TYP_BASAT. I recommend to use 400 k-
points for the calculation. You should exploit the force theorem. Therefore perform a
ferromagnetic calculation first, which should give you the following converged moments
and charges:

** Mulliken charge | m_x | m_y | m_z | Theta | Phi **
1 8.10684 0.00000 0.00000 2.78948 0.0000 0.0000
2 9.89316 0.00000 0.00000 0.56884 0.0000 0.0000

Now use this converged values to perform a force theorem calculation for flat spin-
spirals15 with q along 0.0 → 0.1. To switch on the flat-spiral set FLAT_SPIR=T and
remember to leave the cone angle to zero. We want to treat SOC in 1st order perturbation
theory, therefore switch on SOC_PERTU and specify the SOC parameters in the tables of
the inputcard. Use the SOC parameters given in the appendix B. The results of the
calculation are displayed in fig. 5.4. The linear behaviour around q = 0 is clearly
observable. Due to the small energy-scale of the SOC-contribution, the curve is not
15These type of spin-spiral has to be used to obtain DMI (see section 2.10).
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Figure 5.4: The SOC contribution to the energy of the Fe/Pt chain.

perfectly smooth. Using more k-points would lead to a smoother curve as one can see
in my diploma thesis [16].

Exercises for "experts": If you feel ready to perform a really lengthy calculation
(about 1 day), then try to compare the 1st order SOC treatment in the small chemical
unit cell exploiting the gen. Bloch theorem to a full SOC calculation within the magnetic
unit cell (not exploting the gen. Bloch theorem, see last exercise). Of course you can not
go to arbitrary small q-values, because the necessary magnetic unit cell would become
too large, but it is feasible to do a calculation up to q = 0.0125, which corresponds to
an 160-atomic unit cell. I would recommend to increase the number of k-points to at
least 2000 k-points for the calculation in the chemical unit cell to get a nice comparison.
The results should show you that in the vicinity of q = 0 the slope of the curve should
be the same. Take a look into my diploma thesis if you want to see details.
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6 Code Structure

First an overview of the code structure is presented in section 6.1, after which a detailed
description of each participating subroutine is given in section 6.2.

6.1 Overview of the code structure

In the figure on the right hand side an
overview of the code structure is displayed.
The preparation steps are discussed more
detailed in the subsection 6.1.1. The three
do-loops over the q-vectors, the iteration
steps and the k-points are at the core of
the JuTiBi code. For each q-, k-point and
iteration step the Hamiltonian is created
and diagonalized to obtain the eigenener-
gies and eigenvectors, which are needed to
calculate the Fermi energy εF , the charges
and the magnetic moments. These charges
and magnetic moments enter into the self-
consistency (see fig. 2.9) and if they are
converged the total energy of the system is
determined. A detailed description of this
structural part of the code can be found in
the subsection 6.1.2. Finally the density of
states, the band structure, the Fermi surface
etc. of the converged system can be calcu-
lated (see subsection 6.1.3).

Preparations 

Do q-vectors 
Do iterations 

Do k-points 

Set up Hamiltonian 
and diagonalization 

Calculate        ,  
charges, moments   

End Do k-points 

Self-consistency 
(see fig. 2.9) 

End Do iterations 

Calculate total 
energy 

End Do q-vectors 

Density of states, 
band structure etc. 

1 

2 

3 

Figure 6.1: Overview of the code structure.

The next sections and subsections of this chapter discuss the code structure in detail.
The called subroutines are indicated by the statement "call [name of subroutine]". A
detailed description of the subroutines can be found in section 6.2. Together with the list
of variables (see appendix E) this should allow to work into the code in a short time to
modify it for own purposes etc. Users, who intent to use the code only for calculations,
can skip this part.
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6.1.1 Preparation

The preparation steps involve the creation of the k-mesh, the construction of the neigh-
bour shells, reading in the charges, magnetic moments, the structure of the Hamiltonian
as the Slater-Koster parameters and the creation of the spin-orbit coupling matrix1.

Variable declaration
call readdim
open files
allocate majority of arrays
call lattix_TB

if (dimlattice==2.or.dimlattice==3) then
call pointgrp
call findgrp
call bzirr3d

else if (dimlattice==1) then
call onedim_kmesh

end if

call rrgen
call clsgen99
if (bondcut) then

call cut_bondings
end if

call protohamiltonian
if (skpvary) then

call create_papa_hopping
else

call SKP_by_hand
end if
call proto_SOC

6.1.2 At the heart of the code

In this part of the code the Hamiltonian is set up and is diagonalized for each k- and
q-point in each iteration step. Note that the magnetic part of the Hamiltonian is con-
structed outside of the do-loop over the k-points due to its k-independence. If soglog=F
the Hamiltonian is diagonalized separately in the majority and minority spin channel,
whereas in the case soglog=T the Hamiltonian has to be diagonalized in the full spin-
space.

1Note that HSOC is k- and q-independent and does not change within the self-consistency.
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After obtaining all eigenvectors and eigenenergies for all k-points the Fermi energy
and the charges (see eqs. 2.47, 2.48 and 2.54) can be determined. These charges are
used to calculate the magnetic moments and Mulliken-charges of the basis atoms on
which the self-consistency is based. If these quantities are converged the total energy
and the corresponding moments and charges are computed.

DO q-vectors

DO iteration steps
:
: call create_Hmagnetic
:
: DO k-points
: |
: | if (skpvary) then
: | call create_Hk_papa
: | else
: | call create_H0_SKP_by_hand
: | end if
: |
: | if (.not.soclog) then
: | call create_H_loc_neut
: | putting together the Hamiltonian for each spin-channel
: | call Hamilton_diag
: | call save_ee_ev
: | else
: | set up H0 and S
: | if (flat_spiral) then
: | construct spin-flip block of H0 and S
: | end if
: | call create_H_loc_neut
: | if (set_gaxis) then
: | call global_spin_rot
: | end if
: | call Hamilton_diag
: | call save_ee_ev
: | end if
: |
: END DO k-points
:
: call sort_energies
: call calc_Fermi_energy
: call calc_charges
:
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: call sc_mixing :if converged -|
: |
END DO iteration steps |

|
call calc_final_charges <-|
call calc_total_energy

END DO q-vectors

6.1.3 Optional calculations

The final part of the code covers the calculation of the density of states and the com-
putation of the band structure of the converged system along a defined high-symmetry
k-way. For 3-dimensional systems a file can be created allowing to visualize the Fermi
surface with the program XCrysDen (see [50]).

if (log_fermi_surface.and.dimlattice==3) then
call export_data_xcrysden

end if
if (berrycurv=T) then

call export_data_berrycurv
end if
call calc_DOS
calculate the band structure of the converged system
close files and deallocate arrays

6.2 Description of the subroutines

This section lists the most important subroutines used in the JuTiBi code. For each
subroutine the input-, input/output- and output-variables are displayed. A description
for all these variables can be found in the appendix E. Additionally a usually brief
description for each subroutine is presented. For users, who only want to use the code
for calculations this chapter is probably a little bit to special. For these users I would
only recommend to take a look into the description of the subroutine calc−DOS, because
there are described some theoretical aspects, which are not mentioned in chapter 2.
Concerning the description of the input and output variables of the subroutines, I

tried to call the variables in the main program the same as in the subroutines. But for a
few subroutines the variables are called different. In these cases I display the connection
between the variables in writing variable_sub=variable_main. In the list E only the
variable names as called in the main program are displayed.
Another detail, which could be interesting for users, who intent to modify the code:

All subroutines and variables are also explained in the code (usually in the header), but
in some cases the explanations are more detailed in this documentation than in the code.
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Therefore I recommend to work with both, the documentation and the descriptions in
the code, to understand the code.

6.2.1 readdim

Input: This routine has no input variables.
Input/Output: This routine has no input/output variables.
Output: numbasis, npoibz, nkxyz, irr, numendpts, numptsway, dimkway, max_num_
cluster, numbasis_max, max_number_cluster_atoms, spinlog, soclog, skpspin, skpvary,
dimHamilton, lmax, numelectrons_uc, num_energy_DOS, lor_width, faclor, smear_
mag, bondcut, Dosorbat, log_spec_orbat, spec_at, spec_orb, log_fermi_surface,
set_gaxis, new_gaxis, ncmag, nc_in_uc, blo_wave, tb_sc, mix_lin, mix_broy, mix_
alpha, max_iter, n_init_lin, sc_cond, stoner_para, loc_charge_U, restart_sc,
restart_iteration, fermi_broadening, log_theta_constraint, U_con, fat_bands,
numendpts_qway, numpts_qway, log_q_way, log_qmesh, npoiqbz, nqxyz, irr_q, hard_
disk, soc_pertubation, log_change_fermi_energy, dos_local
external routines: Ioinput
Description: This subroutine reads in the majority of the variables of the inputcard.
Most of them are logical variables and integers. Some of these integers are needed to
allocate coming arrays. The most important variables are also displayed as output in
the shell.

6.2.2 Ioinput

Input: CHARKEY, ILINE, IFILE
Input/Output: This routine has no input/output variables.
Output: CHAR, IER
external routines: none
Description: This subroutine is used to find a keyword inside of the first 2000 lines of
the inputcard. If the keyword CHARKEY is found it reads in the first block of characters
(except of indents) stored in variable CHAR. It reads in the same line if "=" is set directly
behind the keyword, or else in the line ILINE under the keyword. Including indents the
keyword has to consist of 10 characters. The character "=" does not have to be set
behind the whole keyword, it can be set directly behind the part of the keyword, behind
which are only indents (e.g. keyword is "NUMBASIS ", then NUMBASIS= is allowed).
Be careful in reading data in line ILINE under the keyword, because data in front of the
keyword is not read in. We show some examples for the keyword "NUMBASIS ":

NUMBASIS=5 correct
NUMBASIS= 5 correct
NUMBASIS correct for ILINE=1

5
NUMBASIS correct for ILINE=2

5
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NUMBASIS wrong!
5

6.2.3 lattix−TB

Input: IBASIS=numbasis
Input/Output: This routine has no input/output variables.
Output: alatc, BRAVAIS=abravais, RECBV=recbravais, basis, DIMBRAVAIS=dimlattice
external routines: Ioinput
Description: In this subroutine the Bravais structure is read in. The lattice parameters,
the Bravais vectors and the position of the basis atoms (either in cartesian- or in Bravais-
representation) are imported from the inputcard. The dimension of the Bravais lattice
is determined and the reciprocal Bravais vectors are calculated by inverting the Bravais
matrix. Notice that the basis atoms in the array basis are given always in cartesian
representation regardless which representation was used in the inputcard.

6.2.4 pointgrp

Input: This routine has no input variables.
Input/Output: This routine has no input/output variables.
Output: rotmat, rotname
external routines: none
Description: In this subroutine the rotation matrices of the symmetries of all 32 lattice
point groups are defined and named after the convention in [51].

6.2.5 findgroup

Input: bravais=abravais, recbv=recbravais, rbasis=basis, alat=alatc, nbasis=
numbasis, rsymat=rotmat, rotname
Input/Output: This routine has no input/output variables.
Output: bravais1=abravais_au, recbv1=recbravais_au, rbasis1=basis_au, abclat=
abclatc, nsymat=numsym, isymindex=symindex
external routines: latvec
Description: The main function of the subroutine is to determine the symmetries of
the lattice structure. Per default basis atoms are considered as non-equivalent for the
symmetry determination. To determine the symmetries all 64 symmetry operations of
the point groups are applied to the lattice. If the transformed vectors are again lattice
vectors the symmetry is a lattice symmetry. To compare the transformed vectors to the
lattice vectors a logical function called latvec is used.
In this subroutine the Bravais vectors and basis vectors are multiplied with the lat-

tice parameters a, b and c to obtain the correct symmetries for non-cubic systems.
These variables abravais_au, recbravais_au and basis_au are usually given in Å or
in a.u. depending on the choice in the inputcard. I would recommend to give all length
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(a) (b) (c) 

Figure 6.2: This figure should give an idea how the code is constructing an irreducible
part of a k-mesh. As an example we choose a simple quadratic lattice. (a)
An equidistant k-mesh in the full reciprocal unit cell of the quadratic lattice
is constructed. (b) In this case the 4-fold rotation-symmetry leads to the
exclusion of all blue k-points, because the red k-points can be mapped onto
the blue ones. (c) After applying all 8 symmetry-operations of the quadratic
lattice the irreducible part is determined.

in Å, because for the implementation of the NRL-TB parametrization the code is written
such that it uses Å as length-unit.

6.2.6 bzirr3d

Input: kpoibz=npoibz, nkxyz, recbv=recbravais, bravais=abravais, abclat=abclatc,
rsymat=rotmat, nsymat=numsym, isymindex=symindex, irr
Input/Output: This routine has no input/output variables.
Output: nkp, nk=numkmesh, kp, wtkp, volbz
external routines: cross, ddet33, ddot1, dinit, dinv33, dmpy, dnrm2, scal1, dswap1, er-
rmsg, nrmliz, rotmat, symlat
and some Lapack routines: dcopy, daxpy, idamax
Description: This subroutine and its external routines are only described very briefly
in this documentation. More information can be found in the documentation about the
SPRKKR code [53], which uses the same routine to create the k-meshs.
First, the subroutine creates an equidistant k-mesh with nkxyz(:) k-points along

the Bravais vector directions Then it calculates an irreducible part of this k-mesh by
applying the symmetry-operations of the lattice to the k-points and leaving only the
k-points, which are not reproduced by symmetry-operations (see fig. 6.2). In addition
the weights of the k-points are determined, which are useful for integrations over the
Brillouin zone. Note that the k-points are given in units of 2π and therefore contain the
lattice parameters a, b and c.
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6.2.7 onedim−kmesh

Input: alat=alatc(1), recbv=recbravais, bravais=abravais, nbasis=numbasis, basis,
npoibz, nkx=nkxyz(1), irr
Input/Output: This routine has no input/output variables.
Output: bravais1=abravais_au, recbv1=recbravais_au, basis1=basis_au, nsymat=
numsym, nkp, numkmesh, kp=kp_1dim, wtkp, volbz
external routines: none
Description: This subroutine calculates the symmetries of a 1-dim. lattice (i.e. the
inversion-symmetry of the system) and creates an equidistant k-mesh in the Brillouin
zone. If irr=true the irreducible part of the Brillouin zone is created, therefore half of
the BZ if inversion-symmetry is fulfilled. The inversion-symmetry examination assumes
the basis atoms as different by default. Note that the k-points are in units of 2π, but
the lattice parameter a is contained.

6.2.8 rrgen

Input: BV=abravais_au, abclatc, DIMBRAVAIS=dimlattice, NRD=max_num_cluster
Input/Output: This routine has no input/output variables.
Output: RR=cluster, NR=num_cluster
external routines: dsort, scalpr, vadd, veq, vmul, Ioinput
Description: The routine rrgen prepares a cluster containing all Bravais vectors of the
lattice inside a sphere with a radius of at least Rmax (in units of a). This cluster is
used in the routine clsgen99 to determine the neighbour shells for each basis atom. The
external routines are not explained in this documentation, but they are also used in the
SPRKKR code [53].

6.2.9 clsgen99

Input: NAEZ=numbasis, RR=cluster, RBASIS1=basis_au, ALAT=abclatc, NAEZD=numbasis_
max, NRD=max_num_cluster, NACLSD=max_number_cluster_atoms
Input/Output: This routine has no input/output variables.
Output: Z=atomic_number, NACLS=num_atom_cluster, ATOM=cluster_atom_index, EZOA=
cluster_atom_bravais, RCLS=pos_cluster_atom, RCUT=R_cutoff
external routines: dsort, rinit, Ioinput
Description: This subroutine uses the prepared cluster of Bravais vectors from the sub-
routine rrgen and includes the basis atoms to obtain neighbour shells for each basis atom.
The shells are essential for the description of the hopping elements and on-site energies
within the Slater-Koster parametrization and the NRL-TB parametrization. The atoms
within a cluster are saved in the array pos_cluster_atom(:,:,:) via a certain order:
First the atoms are ordered concerning the bonding-distance, then the z-component,
y-component and at last the x-component. Figure 6.3 adumbrates the method used to
construct the shells.
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Figure 6.3: This is a simple example for the cluster generation of a rectangular lattice
with two basis atoms (red and blue). Within a certain cut-off radius R_
cutoff a Bravais cluster is generated in the subroutine rrgen. This cluster
is indicated with the black solid arrows as Bravais vectors. In the subroutine
clsgen99 the full Cluster is created by adding the basis atoms.

6.2.10 cut−bondings

Input: max_number_cluster_atoms, numbasis
Input/Output: pos_cluster_atoms, num_atom_cluster
Output: This routine has no output variables.
external routines: none
Description: This optional subroutine is only activated, if the logical bond_cut is true.
The subroutine is cutting off the bondings, which are specified in the inputcard by
erasing them from the array pos_cluster_atom(:,:,:) and num_atom_cluster(:). It
should be remarked, that this subroutine wasn’t used frequently, therefore debugging
could be necessary.

6.2.11 protohamiltonian

Input:numbasis, max_number_cluster_atoms, pos_cluster_atom, num_atom_cluster,
spinlog, soclog, dimHamilton, lmax, Stoner_para, skpvary, max_iter, restart_sc,
restart_iteration, nc_mag, blo_wave, nc_in_uc, basis, soc_pertubation
Input/Output: This routine has no input/output variables.
Output: hamorb, hambasis, hampos, xn, yn, zn, nnearneigh, soc_p, soc_d, soc_
p_pert, soc_d_pert, xcenergy, total_moment, total_mullikan_charge, mullikan_
charge_start, nc_angles, blo_theta, blo_q, distance, ovlap, mag_x, mag_y, mag_z,
abs_mag_d, papa_binary, type_baseatom, flat_spiral
external routines: Ioinput, moments−local−to−global
Description: The subroutine protohamiltonian defines the structure of the basis rep-
resentation of the Hamiltonian (hamorb(:), hambasis(:) and hampos(:,:)). Some
for the future steps necessary logical variables as f. ex. the treatment of an overlap
matrix (ovlap) or the usage of a flat spin-spiral are read in. In addition the charges
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and magnetic moments for the 1st iteration step are calculated and imported from the
inputcard or if wished imported from the history of an older self-consistent calculation
(restart_sc=true). The subroutine moments−local−to−global is used to transform the
magnetic moments (mx,my,mz) from the local frame (mx = my = 0 and mz = |~m|) into
the global frame.

6.2.12 moments−local−to−global

Input: i_iteration, numbasis, max_iter, total_moment, nc_angles, blo_wave, nc_
in_uc, blo_theta, blo_q, basis, flat_spiral
Input/Output: This routine has no input/output variables.
Output: mag_x, mag_y, mag_z
external routines: none
Description: This subroutine is used to transform the magnetic moments (mx,my,mz)
from the local frame (mx = my = 0 and mz = |~m|) into the global frame. The trans-
formation distinguishes between the case of a spin-spiral (blo_wave=true) and non-
collinear magnetism in the unit cell via setting the angles by hand (nc_in_uc=true
and nc_angles(:,:,:)). In the case, where both possibilities are switched on the
nc_angles play the role of (simple) phase-factors, which can change the cone angle and
the rotation angle coming from the spin-spiral q-vector on each atom. In the case of a
flat-spiral only Θ enters as phase-factor. If necessary it can be used in each iteration
step (i_iteration).

6.2.13 SKP−by−hand

Input: spinlog, numbasis, ovlap
Input/Output: This routine has no input/output variables.
Output: onsite_s, onsite_p, onsite_d, vss_sigma, vsp_sigma, vpp_sigma, vsd_
sigma, vpd_sigma, vdd_sigma, vpp_pi, vpd_pi, vdd_pi, vdd_delta, oss_sigma, osp_
sigma, opp_sigma, osd_sigma, opd_sigma, odd_sigma, opp_pi, opd_pi, odd_pi, odd_
delta, Sonsite_s, Sonsite_p, Sonsite_d, Svss_sigma, Svsp_sigma, Svpp_sigma, Svsd_
sigma, Svpd_sigma, Svdd_sigma, Svpp_pi, Svpd_pi, Svdd_pi, Svdd_delta, Soss_
sigma, Sosp_sigma, Sopp_sigma, Sosd_sigma, Sopd_sigma, Sodd_sigma, Sopp_pi, Sopd_
pi, Sodd_pi, Sodd_delta
external routines: Ioinput
Description: This subroutine reads in the Slater-Koster parameters (SKPs) for the
Hamiltonian and the overlap matrix (if ovlap=true). In principle there are two major
possibilities to describe the SKPs in the code: The first one is the NRL-TB parametriza-
tion and the other one is setting the SKPs by hand. In the case of the NRL-TB
parametrization this subroutine is inactive and the subroutine create−papa−hopping
takes over the role to import the SKPs. There are different possibilities to set the
SKPs by hand, such as using identical atoms (identatoms=true, in this case use the
inputcard for the SKPs) or treating different atom types (identatoms=false, in this
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case use the file SKP_input for the SKPs!). One can read in spin-dependent SKPs (V ↑→↓ll′m

included) in the case SKP_spin=true or spin-independent SKPs (SKP_spin=false).

6.2.14 create−papa−hopping

Input: numbasis, max_number_cluster_atoms, alatc, cluster_atom_index, distance,
xn, yn, zn, nnearneigh, char_log, max_nnear, papa_binary, type_baseatom
Input/Output: This routine has no input/output variables.
Output: papa_hopping, papa_onsite
external routines: papakonst−input
Description: This subroutine calculates all necessary hopping elements up to a cut-
off radius within the NRL-TB scheme. First the NRL-TB parameters (93 parameters
for each atom type) are imported from the file SKP_input_papakonst. Then the dis-
tance dependent Slater-Koster parameters are calculated, which are directly used for the
Slater-Koster transformations (see table A.1) to obtain all hopping elements (45 types
for each bonding). The individual hopping elements are saved in following structure:
1: s− s , 2: s− px , 3: s− py, 4: s− pz, 5: px − px, 6: py − py, 7: pz − pz, 8: px − py,

9: px − pz, 10: py − pz, 11: s− dxy, 12: s− dxz, 13: s− dyz, 14: s− dx2−y2 , 15: s− dz2 ,
16: px − dxy, 17: px − dxz, 18: px − dyz, 19: px − dx2−y2 , 20: px − dz2 , 21: py − dxy, 22:
py−dxz, 23: py−dyz, 24: py−dx2−y2 , 25: py−dz2 , 26: pz−dxy, 27: pz−dxz, 28: pz−dyz,
29: pz − dx2−y2 , 30: pz − dz2 , 31: dxy − dxy, 32: dxy − dxz, 33: dxy − dyz, 34: dxy − dx2−y2 ,
35: dxy−dz2 , 36: dyz−dyz (!), 37: dyz−dx2−y2 , 38: dyz−dz2 , 39: dxz−dxz, 40: dxz−dyz,
41: dxz − dy2−z2 , 42: dxz − dz2 , 43: dx2−y2 − dx2−y2 , 44: dx2−y2 − dz2 , 45: dz2 − dz2

In addition the on-site energies are calculated within the NRL-TB scheme. The input-
character char_log is used to either determine the hopping elements of the Hamiltonian
(char_log=’H’) or to determine the overlap-matrix elements (char_log=’O’) .

6.2.15 proto−SOC

Input: numbasis, dimHamilton, hamorb, hambasis, soc_p, soc_d, set_gaxis, new_
gaxis
Input/Output: This routine has no input/output variables.
Output: SOC_matrix, L_x, L_y, L_z, rot_spinonian, rot_spinonian_inv
external routines: none
Description: This subroutine creates the angular moment operators in atomic orbital
representation and uses them to construct the k-independent spin-orbit coupling matrix.
In the case set_gaxis=true additionally the spin-rotation matrices for a global spin
rotation are calculated. The structure of the rotation matrix is as follows:(

cos
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φ
2

)
− inz · sin

(
φ
2

)
− sin

(
φ
2

)
[ny + inx]

sin
(
φ
2

)
[ny − inx] cos

(
φ
2

)
+ inz · sin

(
φ
2

))
with φ the rotation angle and n = (nx, ny, nz) the normalized vector pointing along
the rotation axis to obtain the global spin rotation. These values are calculated auto-
matically in the code. The user has to enter only the new direction for the magnetic

109



Code Structure 6.2 Description of the subroutines

moments. These rotation matrices act on the magnetic part of the Hamiltonian before
the diagonalization.
Note that a global spin rotation can be also adjusted by setting the angles nc_angles

in the case nc_in_uc=true. I would recommend to set the angles by hand within nc_
in_uc=true instead of using set_gaxis=true to realize a global spin rotation, because
the first method is much more tested. The global spin rotation within set_gaxis=true
can not be used together with nc_in_uc=true!

6.2.16 create−q−way

Input: dimlattice, numendpts=numendpts_qway, numptsway=numpts_qway, dimkway=dimqway
Input/Output: This routine has no input/output variables.
Output: kway=qway, kway_param=qway_param
external routines: scalpr
Description: This subroutine creates q-vectors along a defined way in the Brillouin zone.
Important to note is that the q-vectors are in units of 2π and therefore contain the lattice
parameters a, b and c.

6.2.17 create−Hmagnetic

Input: dimHamilton, numbasis, hamorb, hambasis, nc_in_uc, blo_wave, ncmag, nc_
angles, i_iteration, max_iter, stoner_para, mag_x, mag_y, mag_z, total_moment,
type_baseatom, log_theta_constraint, U_con, blo_theta, blo_q, basis, flat_spiral
Input/Output: This routine has no input/output variables.
Output: H_mag
external routines: moments−local−to−global
Description: These subroutine creates the magnetic part of the Hamiltonian H_mag,
which is the only part (beside H_SOC) in the NRL-TB scheme, in which the spin-blocks
are not the same. The magnetic Hamiltonian is described by the Stoner model (see
section 2.6), which can be simply extended to non-collinear magnetism (see section 2.8).
H_mag is always in the representation of the global spin frame, which makes it neces-
sary to take out the q-dependent spin-rotation in the case of blo_wave=true with the
help of the subroutine moments−local−to−global, because it is already contained in the
gen. Bloch theorem. But notice that the eigenvectors have to be rotated with the q-
dependent spin-spiral angles after the diagonalization to obtain the correct directions for
the magnetic moments (see appendix A.2). It is possible to treat a spin-spiral system
with additional phase factors for the mag. moments of the basis atoms by switching on
blo_wave and nc_in_uc. In this case the nc_angles play the role of the additional
phase factors.
Additionally a constraint to fix the Θ-angle of the magnetic moments is included in

H_mag, if log_theta_constraint=true (see section 2.8).
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6.2.18 create−H0−SKP−by−hand

Input: numbasis, lmax, dimHamilton, max_number_cluster_atoms, pos_cluster_atom,
alatc, cluster_atom_index, hamorb, hambasis, hampos, xn, yn, zn, nnearneigh,
kpoint, onsite_s, onsite_p, onsite_d, vss_sigma, vsp_sigma, vpp_sigma, vsd_
sigma, vpd_sigma, vdd_sigma, vpp_pi, vpd_pi, vdd_pi, vdd_delta, Sonsite_s, Sonsite_
p, Sonsite_d, Svss_sigma, Svsp_sigma, Svpp_sigma, Svsd_sigma, Svpd_sigma, Svdd_
sigma, Svpp_pi, Svpd_pi, Svdd_pi, Svdd_delta, blo_wave, flat_spiral, blo_q, spinlog,
skpspin, ispin
Input/Output: This routine has no input/output variables.
Output: Hamiltonian (respectively Overlapian)
external routines: scalpr
Description: This subroutine creates a certain spin-block (depending on ispin; ispin=1:
H↑↑0 , ispin=2: H↓↓0 , ispin=3: H↑↓0 in case flat_spiral=true) of the k-dependent
HamiltonianH0 (and the overlap matrix, if ovlap=true) within the Slater-Koster scheme.
The (spindependent) Slater-Koster parameters, which are imported in the routine SKP−by−hand
are used in the Slater-Koster transformations (see table A.1) to calculate the matrix ele-
ments of the real space Hamiltonian for arbitrary bonding directions. The translational
symmetry of the system is taken into account by calculating H0(k) by summing up over
all Bravais vectors (Bloch Theorem, see eq. 2.9). For a spin-spiral calculation additional
spin-dependent phase-factors are considered (see eqs. 2.79-2.81 or eqs. A.12 in the case
of a flat-spiral).

6.2.19 create−Hk−papa

Input: numbasis, lmax, dimHamilton, max_number_cluster_atoms, max_nnear, pos_
cluster_atom, alatc, cluster_atom_index, hamorb, hambasis, hampos, nnearneigh,
kpoint, papa_hopping, papa_onsite, char_log, blo_wave, flat_spiral, blo_q, ispin
Input/Output: This routine has no input/output variables.
Output: Hamiltonian (respectively Overlapian)
external routines: scalpr
Description: In principle this subroutine has the same function as create−H0−SKP−by−hand.
Therefore it creates certain spin-blocks of the Hamiltonian H0 (respectively the over-
lap matrix) depending on ispin. But this routine uses the hopping parameters papa_
hopping(:,:,:) and on-site parameters papa_onsite(:,:) created in the subroutine
create−papa−hopping within the NRL-TB parametrization.

6.2.20 create−H−loc−neut

Input: dimH_loc, numbasis, dimHamilton, hambasis, loc_charge_U, Overlapian,
total_mullikan_charge, mullikan_charge_start, i_iteration, max_iter, type_
baseatom
Input/Output: This routine has no input/output variables.
Output: H_loc_charge_neutr
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external routines: none
Description: This subroutine creates the local charge neutrality part of the Hamiltonian
HLCN via eq. 2.44. Due to the overlap matrix the local charge neutrality part is k-
dependent, therefore it is located within the do-loop over the k-points. The local charge
neutrality keeps the Mulliken-charges total_mullikan_charge(:,:) in a small region
around the desired charges mullikan_charge_start(:). The larger the local charge
neutrality constants loc_charge_U, the more strict the constraint.

6.2.21 global−spin−rot

Input: dimHamilton, rot_spinonian, rot_spinonian_inv
Input/Output: Hamiltonian, Overlapian
Output: This routine has no pure output.
external routines: ZHEMM
Description: This subroutine rotates all magnetic moments of the Hamiltonian (with-
out HSOC) into the desired direction new_gaxis(:), which is contained in the rotation
matrix rot_spinonian. Important to note is that the global spin rotation does not
work together with non-collinear magnetism, therefore all spins have to point along the
z-direction. If a global rotation is wished for a non-collinear system put it into the indi-
vidual angles of the magnetic moments in the inputcard under the keyword "NC_ANGLES"
and switch on nc_in_uc=true.

6.2.22 Hamilton−diag

Input: dimHamilton, ovlap
Input/Output: Hamiltonian, Overlapian
Output: bandenergies
external routines: ZHEEV, ZHEGV
Description: This subroutine diagonalizes the Hamiltonian. In the case of soclog=
false the spin-blocks are separately diagonalized for ispin=1 and ispin=2 to spare
computational time. The eigenvectors are stored in the Hamiltonian, therefore it is
overwritten. Notice that also the overlap matrix is overwritten. The eigenvalues are
saved in the array bandenergies.

6.2.23 rotate−EV

Input: dimHamilton, numbasis, basis, hambasis, blo_q, abclatc, flat_spiral
Input/Output: Hamiltonian_wS
Output: This routine has no pure output variables.
external routines: scalpr
Description: This routine rotates the eigenvectors in spin-space with the q-dependent
spiral-angles to obtain the correct directions for the magnetic moments in the global
representation. A detailed derivation of this necessity can be found in A.2. In the case
blo_wave=false this routine is inactive.
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6.2.24 save−ee−ev and save−ee−ev−on−harddisk

Input: soclog, dimlattice, ikmesh, nkxyz, numkmesh, volbz, wtkp, ispin, dimHamilton,
bandenergies, Hamiltonian, Overlapian_Save, numelectrons_uc, numbasis, basis,
hambasis, blo_q, abclatc, flat_spiral, dim_kmesh_ev, some running variables nec-
essary for saving the arrays
Input/Output: This subroutine has no input/output variables.
Output: kmesh_energies, numelectrons, kmesh_eigenvectors and kmesh_eigenvectors_
mod (for hard_disk=false)
external routines: ZHEMM, rotate−EV
Description: These subroutines save the eigenenergies into the array kmesh_energies
and the eigenvectors depending on the logical hard_disk into the array kmesh_eigenvectors
(and the modified EV c′ = S · c of eq. 2.32 into the array kmesh_eigenvectors_mod)
or onto the hard disk. The eigenenergies and eigenvalues are saved in a special order
depending on the logical variables spinlog and soclog. These order-structures should
be explained in detail here:

In the case of spinlog=true and soclog=false the eigenenergies and eigenvectors
are saved in a order according to the spin. Of course this structure can not be used for
a Hamiltonian with SOC. In the case of a non-magnetic treatment, therefore spinlog=
false, there are no spin-channels any more. The eigenvectors are saved column-wise,
therefore in the case of soclog=false the array containing the eigenvectors has dimHamilton
rows, whereas in the case of soclog=true the array has 2 · dimHamilton rows (the first
dimHamilton entries are the ↑-contributions to the EV and the last dimHamilton en-
tries are the ↓-contributions). The following cases show how the eigenenergies (and
eigenvectors) of different k-points and bands are sorted along the row.
(a) spinlog=true, soclog=false ↑︸ ︷︷ ︸

numkmesh·dimHamilton

| ↓︸ ︷︷ ︸
numkmesh·dimHamilton


(b) spinlog=true, soclog=true(

︸ ︷︷ ︸
2·numkmesh·dimHamilton

)

(c) spinlog=false (
︸ ︷︷ ︸
numkmesh·dimHamilton

)
If we go deeper into the structure, the order mechanism is the same for all three cases.

The eigenenergies and eigenvectors are ordered first according to the k-points itself, then
according to the band index and at last according to the degeneracies of the k-point in
the BZ (if irr=true, otherwise the degeneracy of a k-point is always 1). Saving the
eigenvectors and eigenenergies multiple according to the degeneracies is a possibility to
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incorporate the weights of the k-points. The structure of the array has the following
form: ..., εnk1

, εnk1
, εnk1

, εnk1︸ ︷︷ ︸
degeneracy of k1

, εn+1
k1

, εn+1
k1

, εn+1
k1

, εn+1
k1︸ ︷︷ ︸

degeneracy of k1

, ..., εmk2
, εmk2︸ ︷︷ ︸

degeneracy of k2

, ...


Additionally the subroutine rotates the eigenvectors with the routine rotate−EV before

saving them in the case of a spin-spiral calculation. This is necessary to obtain the correct
directions for the magnetic moments for all basis atoms in the unit cell (see A.2).

6.2.25 sort−energies

Input: dimW ,W=kmesh_energies
Input/Output: This routine has no input/output variables.
Output: IND=index_kmesh_energies
external routines: none
Description: This subroutine sorts the array kmesh_energies containing all eigenener-
gies from the smallest to the largest values. Notice that not the array itself is sorted,
but the positions in the array are sorted, because this is much faster for larger arrays.
We should give a simple example:
For the array W = (1.5, 0.7, 3.8) the routine would calculate: IND=(2,1,3).

6.2.26 calc−Fermi−energy

Input: dim_kmesh_ev, numkmesh, kmesh_energies, fermi_broadening, numelectrons_
uc
Input/Output: fermi_energy
Output: This routine has no pure output.
external routines: none
Description: This subroutine calculates the Fermi energy within a Newton method by
using the equation Ne =

∑
k,n f(εF , εk,n) (see eq. 2.27). As starting point for the Newton

method a roughly determined Fermi energy by filling up the electrons from the lowest
energetic states to the larger ones is used.

6.2.27 get−eigenvectors

Input: dim_eigenvec, kmesh_eigenvectors, kmesh_eigenvectors_mod, soclog, hard_
disk, ii
Input/Output: This routine has no input/output variables.
Output: eigenvectors, eigenvectors_mod
external routines: none
Description: This subroutine writes out the ii-th eigenvector of the large array kmesh_
eigenvectors (and kmesh_eigenvectors_mod) into the array eigenvectors in the case
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hard_disk=false. In the case hard_disk=true it is written out from the unformatted
files eigenvector.unformatted and eigenvectors_mod.unformatted.

6.2.28 calc−charges

Input: dimHamilton, numkmesh, lmax, numbasis, dim_eigenvec, dim_kmesh_ev, hamorb,
hambasis, soclog, spinlog, hard_disk, fermi_dirac, kmesh_eigenvectors, kmesh_
eigenvectors_mod
Input/Output: This routine has no input/output variables.
Output: charge, mullikan_charge, cross_charge, mullikan_cross_charge
external routines: get−eigenvectors
Description: This subroutine calculates the matrix elements of the density matrix (see
eq. 2.47 and 2.48). These elements are needed to obtain the charges and magnetic
moments of the system. Not only the net-charges are calculated, but also the Mulliken-
charges (see eqs. 2.54) of the system.

6.2.29 sc−mixing

Input: numbasis, lmax, numkmesh, dim_sc, mix_lin, mix_broy, ncmag, i_iteration,
max_iter, mix_alpha, n_init_lin, stoner_para, type_baseatom, blo_q, blo_theta,
abclatc, blo_wave, flat_spiral, charge, mullikan_charge, cross_charge
Input/Output: This routine has no input/output variables.
Output: total_mullikan_charge, total_moment, mag_x, mag_y, mag_z, abs_mag_d,
total_mullikan_moment, xc_energy, nc_angles
external routines: broyden, scalpr
Description: This subroutine calculates all interesting moments (net-moments, Mulliken-
moments, angles of the mag. moments etc.) with the help of the obtained charges in the
routine calc−charges. The net-moments for the d-orbitals (H_mag!) and the Mulliken-
charges of the atoms (H_LCN!) are the necessary variables in the self-consistency (see
figure 2.9). This routine mixes the old variables with the new ones, either within linear
mixing (mix_lin=true) or within Broyden mixing (mix_broy=true). For the Broyden
mixing a routine broyden, based on the paper by D. D. Johnson (see [49]), is used.

6.2.30 calc−final−charges

Input: numbasis, lmax, numkmesh, dimHamilton, dim_eigenvec, dim_kmesh_ev, kmesh_
eigenvectors, kmesh_eigenvectors_mod, hard_disk, soclog, L_x, L_y, L_z, fermi_
dirac, max_iter, hambasis, charge, mullikan_charge, cross_charge, mullikan_
cross_charge, blo_q, abclatc, nc_angles, mag_x, mag_y, mag_z, abs_mag_d, total_
mullikan_charge, last_it, scal_md_ms, scal_md_mp
Input/Output: This routine has no input/output variables.
Output: This routine has no output.
external routines: get−eigenvectors
Description: This subroutine writes out the net-charges, Mulliken-charges, net-magnetic
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moments, Mulliken-magnetic moments and the angular moments of the converged sys-
tems into the file conv_charges.dat.

6.2.31 calc−total−energy

Input: blo_wave, nc_in_uc, soclog, log_theta_constraint, soc_pertubation, hard_
disk, log_change_fermi_energy, numbasis, dim_kmesh_ev, dim_eigenvec, last_it,
max_iter, numkmesh, dimHamilton, dimqway, hamorb, hambasis, hampos, soc_p_pert,
soc_d_pert, blo_q, abclatc, qway_param, fermi_energy, numelectrons, fermi_broadening,
kmesh_eigenvectors, kmesh_eigenvectors_mod, kmesh_energies, type_baseatom, scal_
ms_ms, scal_md_mp, fermi_dirac, stoner_para, loc_charge_U, total_mullikan_charges,
mullikan_charge_start, mag_z, abs_mag_d, nc_angles, blo_theta, U_con, i_q_vec,
i_q_vec_max, log_q_way, log_qmesh, lmax, abravais_au, flat_spiral
Input/Output: This routine has no input/output variables.
Output: This routine has no output.
external routines: get−eigenvectors, calc−Fermi−energy, proto−SOC
Description: This subroutine calculates the band energy (eq. 2.34), the double countings
(eqs. 2.42 and 2.58) and the total energy of the system. In the case of calculating the
magnon dispersion of a spin-spiral the relevant energies are stored in Eq.dat. In addition
the SOC-contribution in 1st order is calculated for spin-spirals if soc_pertubation=true
and saved into the file Eq_1storder_SOC.dat. The equations 2.82, 2.83, 2.84 and 2.88
are incorporated. Therefore also the fermi energy can be recalculated after adding the
1st order SOC contribution by setting log_change_fermi_energy=true. The layer- and
orbital-resolved analysis of the SOC-contributions are saved in the files Eq_1storder_
SOC_layer_resolved.dat and Eq_1storder_SOC_layer_orbital_resolved.dat.

6.2.32 create−input−Jij

Input: qp=blo_q, blo_theta, total_energy, abs_mag_d, i_q_vec, nqp=i_q_vec_max,
numbasis, abravais_au, flat_spiral
Input/Output: This routine has no input/output variables.
Output: This routine has no output.
external routines: none
Description: This subroutine creates the file jenerg.dat as input for the python script
plot_Jij.py programmed by D. Bauer. This program determines the Heisenberg
exchange-coupling parameters Jij and the DM-constant D of the system by linear least
square fits (see section 2.10). These parameters can be for example used in thermody-
namic spin-dynamic simulations [54, 55].

6.2.33 export−data−xcrysden

Input: kmesh_energies, fermi_energy, nkxyz, recbravais_au, alatc, dimHamilton,
numkmesh, spinlog
Input/Output: This routine has no input/output variables.
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Output: This routine has no output.
external routines: none
Description: This subroutine creates the file fermi_surface.bxsf, which can be ex-
ported into the external program XCrysDen to determine the Fermi surface of the sys-
tem. Details about the structure of this file can be found in the internet [50]. The
program is not able to treat 2-dim systems and the calculation of the k-mesh in the
irreducible BZ, yet. At least the last point can be extended easily for later purposes.

6.2.34 export−data−berrycurv

Input: numbasis, alatc, abravais, type_baseatom, basis, stoner_para, soc_p, soc_
d, loc_charge_U, fermi_energy, dimHamilton, lmax, hamorb, hambasis, hampos, blo_
theta,blo_q, max_iter, last_it, ncmag, blo_wave, nc_in_uc, flat_spiral, log_
theta_constraint,U_con, mullikan_charge_start, set_gaxis, new_gaxis, max_number_
cluster_atoms, cluster_atom_index, nnearneigh, ovlap, pos_cluster_atom, max_
nnear, papa_onsite, papa_onsite_ov, papa_hopping,papa_hopping_ov, total_moment,
nc_angles, mag_x, mag_y, mag_z, total_mullikan_charge
Input/Output: This routine has no input/output variables.
Output: This routine has no output.
external routines: none
Description: This subroutine writes out all necessary data into three files (basics.
berrycurv, hopping.berrycurv and charges.berrycurv) to reconstruct the Hamilto-
nian depending on a k-point. It is in particular designed to fit to the code of H. Zhang,
capable to calculate the Berry curvature for a tight-binding system. To activate this
subroutine, different to other cases not the inputcard is used, but rather a file inp.
berrycurv has to be provided (write T at the beginning of the file) in the input-folder.
Works only for soclog=T and skpvary=T!

6.2.35 transform−DOS−local

Input: nc_in_uc, blo_wave, flat_spiral, numbasis, nc_angles, blo_theta, blo_q,
basis_au, dimHamilton, hambasis
Input/Output: eigenvectors, eigenvectors_mod
Output: This routine has no output.
external routines: none
Description: This subroutine rotates the eigenvectors from the global spin-frame into the
local spin-frame. This is needed to obtain the partial DOS in the local spin-frame. The
structure of the spin-rotation matrices is the same than in the subroutine rotate−EV.

6.2.36 calc−DOS

Input: nc_in_uc, blo_wave, flat_spiral, numbasis, nc_angles, blo_theta, blo_q,
basis_au, dimHamilton, hambasis, dim_kmesh_ev, dim_eigenvec, spinlog, soclog,
num_energy_DOS, faclor, lor_width, kmesh_energies, index_kmesh_energies, hamorb,
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hampos, spec_at, spec_orb, lmax, numkmesh, kmesh_eigenvectors, kmesh_eigenvectors_
mod, dos_local, dosorbat, log_spec_orbat, hard_disk
Input/Output: This routine has no input/output variables.
Output: This routine has no output.
external routines: transform−DOS−local, get−eigenvectors
Description: This subroutine calculates the total DOS and the partial DOS (if dosorbat=
true) of the system and stores them into files. We should give a detailed analysis of the
files:

spinlog=false - Total DOS saved in Total_DOS_up.dat and the partial DOS in DOS_
atom_orbital_resolved.dat

spinlog=true, soclog=false - Total DOS saved depending on the spin-channel in
Total_DOS_up.dat and Total_DOS_down.dat, the partial DOS in DOS_atom_orbital_
resolved_up.dat and DOS_atom_orbital_resolved_down.dat

soclog=true - Total DOS saved in SOC_Total_DOS.dat, and the partial DOS depending
on the spin-channel in SOC_DOS_atom_orbital_resolved_up.dat and SOC_DOS_atom_
orbital_resolved_down.dat

In addition there is the possibility to calculate the DOS in the local spin-frame by setting
dos_local=true. This is realized via the subroutine transform−DOS−local. The topic
of the DOS-calculation is treated very shortly in the theory-part of this documentation.
It is helpful to give some theoretical details about the implementation in the code:
As indicated in eq. 2.30 and 2.31 the (partial) DOS is calculated via lorentzian func-

tions of the form

l(ε, εk,n) =
1

π
· Γ

Γ2 + (ε− εk,n)2
.

Note that the width Γ is defined as half width of the lorentzian function at half of
the maximal value (i.e. half of the full half-width maximum value (FHWM)). In the
inputcard the variable lor_width is defined as the FHWM of the lorentzian function!
Therefore it holds: lor_width=2Γ = w.
It is numerically efficient to limit the number of contributing eigenvalues εk,n in the

sum 2.30 in the numerical determination of the density of states D(ε). The eigenvalues,
which are energetically far way from the energy ε can be neglected. This is realized by
setting an input-value faclor, referred to as α in the following, determining the range
to 2α · w symmetric around ε in which the sum will be executed. Of course it is also
possible to fix the energy εk,n and to determine the relevant region of energies ε for
which D(ε) is evaluated. This is the method how it is realized in the code. But before
we are going into more details, let us first say more about creating the energy-mesh for
the DOS:

εi = (εmin
k,n − α · w) + (B + 2α · w) · i− 1

Nε − 1
for 1 ≤ i ≤ Nε ,
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ε

B

εmin
!k,n

εmax
!k,n

α · w α · w

Figure 6.4: This figure displays the within the code constructed energy-mesh for the
DOS-calculation. The set is chosen in a way that the start point min

k,n
(εk,n)−

α ·w and the end point max
k,n

(εk,n) + α ·w are contained in the energy-mesh.

with Nε=num_energy_DOS the number of energy points in the equidistant energy-mesh,
B = max

k,n
(εk,n)−min

k,n
(εk,n) the bandwidth of the eigenenergy-spectrum and min

k,n
(εk,n) =

εmin
k,n . In figure 6.4 the constructed energy-mesh is displayed.
Now to determine the relevant region of the energy-mesh of 2α · w around εk,n, first

the code will determine the ī for which εī is the nearest energy to εk,n:

εk,n = (εmin
k,n − α · w) + (B + 2α · w) · x− 1

Nε − 1

⇔ x− 1 =
Nε − 1

B + 2α · w ·
(
εk,n − (εmin

k,n − α · w)
)

⇒ ī = nint(x+ 1) ,

therefore
ī = nint

(
Nε − 1

B + 2α · w ·
(
εk,n − (εmin

k,n − α · w)
)

+ 1

)
.

Now determine the range ∆i of the running index for which ε ∈ [εk,n − α · w, εk,n + α · w]:

α · w =
B + 2α · w
Nε − 1

·∆x

⇔ ∆x =
Nε − 1

B + 2α · w · α · w

⇒ ∆i = nint

(
Nε − 1

B + 2α · w · α · w
)
. (6.1)

To conclude the code is considering only the mesh-energies with the running indices
i ∈ [̄i−∆i, ī+ ∆i] to add contributions coming from the eigenenergy εk,n to the DOS.

6.2.37 create−k−way

Input: dimlattice, numendpts, numptsway, dimkway
Input/Output: This routine has no input/output variables.
Output: kway, kway_param
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external routines: scalpr
Description: This subroutine creates k-vectors along a defined way in the Brillouin zone.
Important to note is that the k-vectors are in units of 2π and therefore contain the lattice
parameters a, b and c.
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7 Outlook and Improvements

In the last chapter of this documentation I want to propose some future improvements
of the JuTiBi code. By doing this I hope to give some ideas to the users, which are
motivated to improve the code. Of course I am also interested in your ideas how to
improve the code. Therefore you can send constructive suggestions to t.schena@fz-
juelich.de. Here is the list of proposed improvements:
I think really useful could be a MPI-parallelization in the k-points, in particular for

the investigation of such small quantities as DMI or MCA, which need a lot of k-points to
converge. Beside the useful speed up of the code, also the memory limitations concerning
the number of k-points can be lowered. However, for users who want to modify the code
to treat very large supercell structures this improvement yields no big advantage.

Another big issue could be the implementation of the tetrahedron method [56] to im-
prove the numerical quality of the code and to allow an accurate determination of Fermi
surfaces. There is a recently developed code by B. Zimmermann, which contains the
tetrahedron method for 2- and 3-dimensional structures. Therefore it has the advantage
to treat also surface systems, which can not be treated within XCrysDen [50].

The constraint for the Θ-angle of the magnetic moments implemented in the JuTiBi
code can be also improved. Beside implementing a constraint for the φ-angle, which is
missing in the code, I would think about changing the type of constraint. The recent
method is not able to properly fix the magnetic moment for all systems. In particular
the magnetic moments of a very complex systems can be difficult to fix. I would propose
to test a constraint, which induced magnetic field is not pointing perpendicular to the
magnetic moment but rather along the direction. Another possibility could be to work
in the local frame of the magnetic moment, so that they can not change their direction
during self consistency.

The last improvement is a rather important one, but unfortunately also a very difficult
task. It would be very nice to have universal and transferable parameter sets for each
element, which allow a nice quantitative description of the systems, not depending on
their structure and composition. I think this is almost impossible to achieve. Therefore it
would be already nice to perform simple ab-initio calculations (as f.ex. LMTO) to obtain
the specific parameters accurately describing the non-magnetic electronic structure of
the system. With these parameters of this specific system magnetic calculations can
be performed on top within the JuTiBi code to spare a lot of computational time and
obtain very accurate results. However, there are disadvantages of this method compared
to the recent application in the JuTiBi code. The method would become more complex,
because an additional ab-initio calculation has to be performed for each new structure
before using the JuTiBi code. Furthermore an increased complexity of the method leads
to a more difficult interpretation of results. Nevertheless to obtain quantitatively reliable
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Outlook and Improvements

values within the tight-binding scheme I do not see any alternative.
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A Appendix

A.1 Angular moment operator in atomic orbital
representation

Calculating the angular moment operator L = r × p in representation of the atomic
orbitals |µ〉 is done straight forward by using the following equations for Lz and the
ladder operators L±:

Lz · |l,m〉 = m · |l,m〉 (A.1)
L± · |l,m〉 =

√
l · (l + 1)−m · (m± 1) · |l,m± 1〉 , (A.2)

where |l,m〉 are the eigenfunctions of L2 and Lz, which are the complex spherical har-
monics in real space representation.

With Lx = 1
2
·(L++L−) and i·Ly = 1

2
·(L+−L−) we derive the following expressions for

the angular moment in atomic orbital representation (s, px, py, pz, dxy, dxz, dyz, dx2−y2 , dz2):

[Lx]νµ =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −i 0 0 0 0 0
0 0 i 0 0 0 0 0 0
0 0 0 0 0 −i 0 0 0
0 0 0 0 i 0 0 0 0

0 0 0 0 0 0 0 −i −i
√

3
0 0 0 0 0 0 i 0 0

0 0 0 0 0 0 i
√

3 0 0


(A.3)

[Ly]νµ =



0 0 0 0 0 0 0 0 0
0 0 0 i 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 −i 0 0 0 0 0 0 0
0 0 0 0 0 0 i 0 0

0 0 0 0 0 0 0 −i i
√

3
0 0 0 0 −i 0 0 0 0
0 0 0 0 0 i 0 0 0

0 0 0 0 0 −i
√

3 0 0 0


(A.4)
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Appendix A.2 Derivation of the phase factors

[Lz]
ν
µ =



0 0 0 0 0 0 0 0 0
0 0 −i 0 0 0 0 0 0
0 i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2i 0
0 0 0 0 0 0 −i 0 0
0 0 0 0 0 i 0 0 0
0 0 0 0 −2i 0 0 0 0
0 0 0 0 0 0 0 0 0


(A.5)

To obtain the SOC-matrix in atomic orbital representation, one has to use the equation

HSOC ∝ L · S (A.6)

with S = h̄
2
· σ.

A.2 Derivation of the phase factors

The Bloch-waves

|Φ↑iµ(k)〉 =
1√
N
·
∑
n

eik·(Rn+τ i) · |n, i, µ〉 ·
(

e−
i
2
q·(Rn+τ i)

0

)
(A.7)

|Φ↓iµ(k)〉 =
1√
N
·
∑
n

eik·(Rn+τ i) · |n, i, µ〉 ·
(

0

e
i
2
q·(Rn+τ i)

)
. (A.8)

satisfy the generalized Bloch theorem [9, 10, 11] and they form an orthonormalized set
of basis functions. The Hamiltonian displays as follows in representation of these Bloch
waves:

〈Φσ
i,µ|H |Φσ′

j,ν〉 =
1

N

∑
n,n′

eik·(Rn+τ j−Rn′−τ i) · (χ̃σn′,i,µ)† · (Hj,ν
i,µ )σσ

′
(Rn′ −Rn) · χ̃σ′n,j,ν

with

χ̃σn,i,µ = U · χσn,i,µ

=


(

e(−i/2·q·(Rn+τ i)

0

)
if σ =↑(

0
e(i/2·q·(Rn+τ i))

)
if σ =↓

, (A.9)

where U is the spin transformation matrix from eq. 2.65 with φ = q · (Rn + τ i) and
Θ = 0. The χσ are the ↑- and ↓-spins in the global frame, therefore (1, 0)T and (0, 1)T.
Therefore it holds:

124



A.2 Derivation of the phase factors Appendix

(Hj,ν
i,µ )σσ

′
(k, q) =

1

N
·
∑
n,n′

eik·(Rn+τ j−Rn′−τ i) · (χσn′,i,µ)† · [U †(q · (Rn′ + τ i)) ·

(Hj,ν
i,µ )σσ

′
(Rn′ −Rn) · U(q · (Rn + τ j))] · (χσ

′

n,j,ν) . (A.10)

H0 and HLCN is proportional to the unit matrix in spin-space. With ti,µ→j,ν(Rn′−Rn)
the hopping element of the Hamiltonian from the state i, µ to the state j, ν, it holds due
to the spin-independence of the hopping elements:

[H0]jνiµ =

(
ti,µ→j,ν 0

0 ti,µ→j,ν

)
.

The magnetic part Hmag is invariant under this transformation, because it consists only
of (spin-dependent) onsite-elements.

Therefore the expression U †(q · (Rn′ + τ i)) · U(q · (Rn + τ j)) yields the specific phase-
factors (sji (q ·Rn))σσ

′ :

(sji (q ·Rn))↑↑ = e−i q
2
·(Rn+τ j−τ i)

(sji (q ·Rn))↓↓ = ei q
2
·(Rn+τ j−τ i)

(sji (q ·Rn))↑↓ = 0 (A.11)

The dependence on the cone angle Θ is not contained in the phase-factors. By treating
the system in the global frame they are contained in the description of Hmag. By using
instead a local frame description as in [16] the phase-factors are more complicated due
to their Θ-dependence, but the magnetic part is very simple (it is diagonal in spin).

For a spin-spiral of the type (c) in fig. 2.15 the phase-factors are a little bit different.
In an analogous way one can derive the phase factors for these ”flat-spirals“ as follows:

(sji (q ·Rn))↑↑ = cos
(q

2
· (Rn + τ j − τ i)

)
(sji (q ·Rn))↓↓ = cos

(q
2
· (Rn + τ j − τ i)

)
(sji (q ·Rn))↑↓ = −sin

(q
2
· (Rn + τ j − τ i)

)
(sji (q ·Rn))↓↑ = [(sji (q ·Rn))↑↓]∗ (A.12)

Another important remark: Notice that the eigenvectors after the diagonalization H
do not yet have the correct structure to yield the correct directions of the magnetic
moments, if the system contains of basis atoms with τ i · q 6= 0. To obtain the cor-
rect eigenvectors, the corresponding elements have to be rotated with the q-dependent
spin-rotation matrices

U i =

(
exp−i q

2
·τ i 0

0 expi q
2
·τ i

)
.
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To demonstrate this necessity, we should take a look to the following system:
Imagine we have a unit cell of a 1-dim. system consisting of 4 basis atoms along the

direction of a spin-spiral vector q = 0.25 ex and a cone angle of Θ, as displayed in figure
2.13a. We can treat the system within the usual scheme of non-collinear magnetism
indicated in eq. 2.68, which leads to following structure of the Hamiltonian:

H = H0 +Hmag(Θ, φ1, ..., φ4) .

with φi the azimuthal angle of the magnetic moment of basis atom i. But of course
we can also treat the system within the gen. Bloch theorem, without exploiting the
advantage of using the smaller unit cell (see fig. 2.13b). The φ-angles can be written as
q · τ i and the structure of the Hamiltonian by considering the appearing phase-factors
would be as follows:

Hgen. BT = Hgen. BT
0 (q) +Hgen. BT

mag (Θ) .

The transformations U i connect the two cases by the formalized equation:

Hgen. BT = U · H · U †

Therefore to obtain the same structure for the eigenvectors as in the usual scheme
within eq. 2.68, the eigenvectors have to be rotated with the transformation U after the
diagonalization. Note that the energies will not change due to the unitary structure of
the transformation U , but only the structure of the eigenvectors.
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Hs
s = Vssσ

Hx
s = lVspσ

Hx
x = l2Vppσ + (1− l2)Vppπ

Hy
x = lmVppσ − lmVppπ

Hz
x = lnVppσ − lnVppπ

Hxy
s =

√
3lmVsdσ

Hx2−y2
s = 1

2

√
3(l2 −m2)

Hz2

s =
[
n2 − 1

2
(l2 +m2)

]
Vsdσ

Hxy
x =

√
3l2mVpdσ +m(1− 2l2)Vpdπ

Hyz
x =

√
3lmnVpdσ − 2lmnVpdπ

Hxz
x =

√
3l2nVpdσ + n(1− 2l2)Vpdπ

Hx2−y2
x = 1

2

√
3l(l2 −m2)Vpdσ + l(1− l2 +m2)Vpdπ

Hx2−y2
y = 1

2

√
3m(l2 −m2)Vpdσ −m(1 + l2 −m2)Vpdπ

Hx2−y2
z = 1

2

√
3n(l2 −m2)Vpdσ − n(l2 −m2)Vpdπ

Hz2

x = l
[
n2 − 1

2
(l2 +m2)

]
Vpdσ −

√
3ln2Vpdπ

Hz2

y = m
[
n2 − 1

2
(l2 +m2)

]
Vpdσ −

√
3mn2Vpdπ

Hz2

z = n
[
n2 − 1

2
(l2 +m2)

]
Vpdσ +

√
3n(l2 +m2)Vpdπ

Hxy
xy = 3l2m2Vddσ + (l2 +m2 − 4l2m2)Vddπ + (n2 + l2m2)Vddδ

Hyz
xy = 3lm2nVddσ + ln(1− 4m2)Vddπ + ln(m2 − 1)Vddδ

Hxz
xy = 3l2mnVddσ +mn(1− 4l2)Vddπ +mn(l2 − 1)Vddδ

Hx2−y2
xy = 3

2
lm(l2 −m2)Vddσ + 2lm(m2 − l2)Vddπ + 1

2
lm(l2 −m2)Vddδ

Hx2−y2
yz = 3

2
mn(l2 −m2)Vddσ −mn [1 + 2(l2 −m2)]Vddπ +mn

[
1 + 1

2
(l2 −m2)

]
Vddδ

Hx2−y2
xz = 3

2
nl(l2 −m2)Vddσ + nl [1− 2(l2 −m2)]Vddπ − nl

[
1− 1

2
(l2 −m2)

]
Vddδ

Hz2

xy =
√

3lm
[
n2 − 1

2
(l2 +m2)

]
Vddσ − 2

√
3lmn2Vddπ + 1

2

√
3lm(1 + n2)Vddδ

Hz2

yz =
√

3mn
[
n2 − 1

2
(l2 +m2)

]
Vddσ +

√
3mn(l2 +m2 − n2)Vddπ − 1

2

√
3mn(l2 +m2)Vddδ

Hz2

xz =
√

3ln
[
n2 − 1

2
(l2 +m2)

]
Vddσ +

√
3ln(l2 +m2 − n2)Vddπ − 1

2

√
3ln(l2 +m2)Vddδ

Hx2−y2
x2−y2 = 3

4
(l2 −m2)2Vddσ + [l2 +m2 − (l2 −m2)2]Vddπ +

[
n2 + 1

4
(l2 −m2)2

]
Vddδ

Hz2

x2−y2 = 1
2

√
3(l2 −m2)

[
n2 − 1

2
(l2 +m2)

]
Vddσ +

√
3n2(m2 − l2)Vddπ

+1
4

√
3(1 + n2)(l2 −m2)Vddδ

Hz2

z2 =
[
n2 − 1

2
(l2 +m2)

]2
Vddσ + 3n2(l2 +m2)Vddπ + 3

4
(l2 +m2)2Vddδ

Table A.1: Slater-Koster transformations for s, p and d-orbitals. The matrix elements
Hν
µ(Rn) of the real-space Hamiltonian depend on the direction cosines l =

(Rn)x
|Rn| , m = (Rn)y

|Rn| and n = (Rn)z
|Rn| of the bonding vector Rn. The table is

separated in s-s, s-p, p-p, s-d, p-d and d-d matrix elements by horizontal
lines.
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B Appendix

B.1 Parameter sets for Fe and Pt

The following parameter sets in the tables B.1, B.2 and B.3 are obtained by Mehl et al. by
fitting the TB-bands to LDA/GGA-ab-initio band structures. The results are published
in [3, 4, 57]. The parameters are necessary for the description of the Hamiltonian and
the overlap matrix via eq. 2.21 and eq. 2.23.
Some informations about the parameters:

• The distance R is in atomic units and the Slater-Koster parameters are in Rydberg
in the Mehl et al. parametrization. Therefore the parameters are in following units:

[a] = Ry, [b] = Ry · (a.u.)−1, [c] = Ry · (a.u.)−2, [d] = (a.u.)−0.5

[α] = Ry, [β] = Ry, [γ] = Ry, [χ] = Ry, [λ] = (a.u.)−0.5 .

• The on-site contributions for the overlap matrix are 1.0.

• The parameters c and χ are zero in some of the presented parameter sets, but in
general they are not.

• No difference between the t2g- and eg-states is introduced in the parameter sets.

• The parametrization of the overlap matrix is via the old parametrization scheme
of Mehl et al. [5].

The Stoner parameter in the d-orbitals of Fe is chosen to 0.96 eV and for Pt to 0.58 eV.
The Stoner parameter in the s- and p-orbitals is 10-times smaller. The SOC-parameters
of Fe are 0.06 eV for the d-orbitals and 0.18 eV for the p-orbitals. For Pt the SOC-
parameters are much larger with values of 0.53 eV for the d-orbitals and 2.5 eV for the
p-orbitals.
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Appendix B.1 Parameter sets for Fe and Pt

Rc = 16.5 a.u. Lc = 0.5 a.u. λ = 1.61591889336E+00

orbital α β γ χ
s 3.13939258386E−01 -1.50340969449E+02 5.60131523543E+04 0.0
p 7.50228117251E−01 1.32173351946E+02 -4.83053227618E+03 0.0
d 6.79135670479E−02 1.80487939584E+01 -1.71453585941E+03 0.0

Vll′m a b c d
Vssσ 4.55043825222E−01 -1.21734123013E+00 0.0 9.14314863459E−01
Vspσ 8.72706208251E−01 -2.65085983323E−03 0.0 6.78102167954E−01
Vppσ 1.02661455604E+00 4.62878498635E−02 0.0 6.49770224489E−01
Vppπ -3.61138626592E+01 8.18233539363E+00 0.0 1.17142147452E+00
Vsdσ 5.06145301841E−01 -3.03407375680E−01 0.0 8.23582443933E−01
Vpdσ 3.62443449178E+00 -1.20097178354E+00 0.0 8.70891888071E−01
Vpdπ -1.23170095125E+00 8.46861596670E−01 0.0 9.92415550868E−01
Vddσ -1.30200356145E+00 9.13566450579E−02 0.0 7.96761216755E−01
Vddπ 3.03158415211E+00 -2.29519971304E−01 0.0 9.29910152711E−01
Vddδ -2.42866093686E+00 3.43810222548E−01 0.0 1.01267224138E+00

Vll′m a b c d
Vssσ 2.08691737655E+00 1.50951711074E+00 0.0 9.38172864034E−01
Vspσ 6.61324794182E+00 -2.39708289279E+00 0.0 8.42816286968E−01
Vppσ 7.79047201212E+00 -2.24565537971E+00 0.0 7.63650075929E−01
Vppπ -5.28178851021E+00 1.65816689927E+00 0.0 8.02822184386E−01
Vsdσ -6.29773771311E+02 1.71528662797E+02 0.0 1.30437406994E+00
Vpdσ -3.79544838869E+00 7.64597367732E−01 0.0 8.45424416578E−01
Vpdπ 1.21878943829E+02 -4.37849569870E+01 0.0 1.33895185420E+00
Vddσ -4.33296538382E+00 4.93979871821E+00 0.0 1.19874436110E+00
Vddπ -1.03641263737E+00 1.93977003741E−01 0.0 8.98115322198E−01
Vddδ 4.62136029975E+00 -1.26354179980E+00 0.0 1.05391660677E+00

Table B.1: Fe LDA-parameter set: The first table contains the necessary parameters
for the on-site energies, the second table contains the parameters for the
Hamiltonian matrix elements (hopping elements), whereas the third table
contains the parameters for the overlap matrix.
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Rc = 16.5 a.u. Lc = 0.5 a.u. λ = 0.167876018007E+01

orbital α β γ χ
s .111237776825E+00 .157472037798E+03 .279493598875E+06 -.886322891071E+08
p .512530808853E+00 .305694624645E+03 -.627918805139E+05 -.526504629561E+07
d .956141408199E−01 -.229757020621E+02 .131512865599E+05 -.854972223057E+06

Vll′m a b c d
Vssσ .428297660344E+00 -.736375016998E+00 .242575588592E−02 .858600612943E+00
Vspσ .817564285855E+00 -.114712495851E−02 .571303916419E−02 .713729903579E+00
Vppσ -.624426913703E−01 .169380062153E+00 -.133925020299E−01 .531763011628E+00
Vppπ .457554537257E+03 -.268469067026E+02 -.213983975589E+02 .146261128932E+01
Vsdσ .490269004091E+00 -.381292939420E+00 -.236890354241E−02 .816265910951E+00
Vpdσ .380280165519E+01 -.116865592373E+01 .245781494444E−02 .853580010894E+00
Vpdπ -.170292010391E+01 .789563902306E+00 -.347134872764E−01 .955500742639E+00
Vddσ -.112692175412E+01 .906852484661E−01 -.110402112411E−01 .811112962492E+00
Vddπ .628847411766E+01 -.136259655000E+01 .979967718827E−01 .931326036079E+00
Vddδ -.643123923582E+03 .359148848319E+03 -.546524202557E+02 .147480783649E+01

Vll′m a b c d
Vssσ -.130030306848E+02 .373133347375E+01 .641105326253E+00 .102602926730E+01
Vspσ .105130415274E+02 -.357406235042E+01 -.229978575757E+00 .966897827380E+00
Vppσ .151286790032E+02 -.335893499630E+01 -.246789283219E+00 .849462577539E+00
Vppπ -.255301615149E+01 .154908422778E+01 -.108991538227E+00 .758944165379E+00
Vsdσ -.596211016918E+03 .158217370850E+03 -.132981350821E+01 .128158963555E+01
Vpdσ -.520996890837E+01 .163409810874E+01 -.490336116995E−01 .762616604972E+00
Vpdπ -.449930772185E+02 -.114818134979E+02 -.313846669042E+01 .136886120058E+01
Vddσ .267625592154E+02 -.123743969604E+02 .154936323562E+01 .974949432957E+00
Vddπ -.137179418998E+01 .163248717151E+00 .281060705718E−02 .717618717462E+00
Vddδ .105113669588E+02 -.450600002662E+00 -.395000205694E+00 .101542781750E+01

Table B.2: Fe GGA-parameter set: The first table contains the necessary parameters
for the on-site energies, the second table contains the parameters for the
Hamiltonian matrix elements (hopping elements), whereas the third table
contains the parameters for the overlap matrix.
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Rc = 16.5 a.u. Lc = 0.5 a.u. λ = 1.48637407133E+00

orbital α β γ χ
s 5.83155590317E−03 2.05115875626E+02 -2.04104996463E+04 0.0
p 8.17822535174E−01 5.89749525600E+01 1.12389938450E+04 0.0
d 4.98287869238E−02 -4.47348238061E+00 6.15745074751E+02 0.0

Vll′m a b c d
Vssσ -1.38284631122E+00 -1.20674487008E−01 0.0 8.13944927710E−01
Vspσ 1.83353981972E+00 5.86126500009E−01 0.0 8.45134159397E−01
Vppσ 1.26085142803E+00 1.03890170253E+00 0.0 8.31224712555E−01
Vppπ 2.05175594909E+02 -3.96379653812E+01 0.0 1.13164516026E+00
Vsdσ -2.89294520731E+00 2.44945737996E−01 0.0 7.98201020712E−01
Vpdσ 1.58551087829E+00 -6.94618881904E−01 0.0 8.07843642691E−01
Vpdπ 8.60594193094E−01 -3.28209927985E−02 0.0 8.59013576224E−01
Vddσ -1.75160317524E+00 -3.17276845523E−01 0.0 8.74768883496E−01
Vddπ 7.04207263761E+00 -3.61062702293E−01 0.0 9.55737743700E−01
Vddδ -1.19554932632E+00 1.68459650181E−01 0.0 8.73327306708E−01

Vll′m a b c d
Vssσ 8.48032304726E+00 -1.21344187855E+00 0.0 8.73588630500E−01
Vspσ 2.07665691775E+03 -4.87117198609E+02 0.0 1.42827779253E+00
Vppσ -1.59104408799E+04 3.39006655850E+03 0.0 1.46844841218E+00
Vppπ -4.68565688171E+02 1.29049135927E+02 0.0 1.24800847008E+00
Vsdσ -1.88027778797E+00 4.33067941947E−01 0.0 7.48675014457E−01
Vpdσ 1.40632324463E−01 -1.08623564920E−02 0.0 4.30679519174E−01
Vpdπ -2.32135126063E+00 3.29353331687E−01 0.0 7.81550208218E−01
Vddσ 7.85664648549E−01 -4.01900709200E−02 0.0 7.02103011484E−01
Vddπ -3.26443115027E+00 5.45024650243E−02 0.0 9.05925825725E−01
Vddδ 1.65626596755E+03 -2.95917301165E+02 0.0 1.32876007979E+00

Table B.3: Pt LDA-parameter set: The first table contains the necessary parameters
for the on-site energies, the second table contains the parameters for the
Hamiltonian matrix elements (hopping elements), whereas the third table
contains the parameters for the overlap matrix.
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C Appendix - Example of the
inputcard

***** Input file for JuTiBi code *****
----------------------------------------------------------------------
*** Structure Properties - Lattice ***

ALATBASIS= 2.87d0 1.0d0 1.0d0 lattice constants a, b, c: first lattice constant a : scaling factor | other values are b/a and c/a
the scaling factor a acts on the x-components, whereas b and c act on the y and z-components of the
Bravais vectors (!for 1- and 2-dim structurs don’t set b/a and c/a equal 0, set the bravais vectors 0)

Read in rows and in units of a, b and c! For a (1- or) 2-dim. geometry set (second and) third bravais-vectors to zero!
Note: 1-dim. structures have to be in the x-direction, therefore do not use (0 0 1) as first Bravais vector in this case!
BRAVAIS
-0.5d0 0.5d0 0.5d0
0.5d0 -0.5d0 0.5d0
0.5d0 0.5d0 -0.5d0

----------------------------------------------------------------------
*** Basis atoms in unit cell ***

CARTESIAN= T Basis vectors in cartesian (true) or Bravais (false) representation

BASATOMS read in rows and in units of a, b, c
0.d0 0.d0 0.d0

NUMBASIS=1 number of basis atoms

Information: If one wishes a slab - geometry the z-component of the basisvectors is always in cartesian coordinates,
but the first two components are in cartesian or bravais representation dependent on what is switched on.
----------------------------------------------------------------------
*** k-Mesh Properties ***

BZDIVIDE= 20 20 20 points of k mesh in direction of the reciprocal Bravais vectors
ATTENTION: points of k mesh should fit to relations of a,b,c | it would be also good to choose the values even

KPOIBZ= 8000 Number of points in full BZ
IrrBZ= T Use of irreducible part of BZ (true) or not (false)

HARD_DISK=F if true all eigenvectors are saved on the hard disk and not into the RAM (do not use it for too large systems!)

----------------------------------------------------------------------
*** Properties for DOS calculation ***

NUMENDOS=1000 number of energy-values for energy-mesh in DOS-calculation
LORWIDTH=0.1d0 width of the Lorentzian curves in calculation of DOS (in eV)

FACLOR= 30 factor of widths for calculation of DOS; it sets area in which DOS-calculation will be considered

SMEAR_MAG=T if true a fermi dirac function will be used for the evaluation of the magnetic moments (all charges are calculated
with the smearing, also this logical is set to false) | I recommend to switch it to true

FERM_BROD=0.001d0 broadening of the fermi-function in eV

DOSORBAT=T if true DOS per atom and per orbital will be calculated

LOGSPEC=F if true only one specific DOS/atom/orbital will be calculated
SPECORBAT which specific DOS shall be calculated (for example 1 5 for 1st atom and orbital d_xy)
1 1

DOS_LOCAL=F switch to true if you want to have the DOS in local quant. axis
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LOG_F_SUR=F if true a file for XCrysDen is created to calculate the Fermi surface

----------------------------------------------------------------------
*** Properties of the Cluster Generation ***

MAXCLUST= 10000 maximum Bravais Vectors in Cluster
RMAXIMAL= 4.5d0 minimum radius for clustergeneration in units of a (for rrgen)
RCUTOFF= 3.5d0 cutoff radius for cluster creation (in units of a)
MAXBASIS= 50 maximum number of basis atoms

----------------------------------------------------------------------
*** Atominfo ***

Settings: ( atomic number, number of used orbitals, specification which orbitals are used (1: used, 0: not used),
SOC parameters under corresponding set of orbitals)

!!!LEAVE ONE LINE FREE BETWEEN DIFFERENT BASISATOMS!!! DO NOT CHANGE THIS FORM!

LMAXIMAL=9 total sum over all angular moment numbers l, therefore for all s, p and d orbitals l_max=9
NUMELUC=8 number of electrons per unit cell

-----------------|---------------------------------------
ZATOM #ORB | s_Orb | px_Orb py_Orb pz_Orb |
45.0d0 9 | 1 | 1 1 1 |
-----------------|--------------------------------------|
SOC-Parameter: | --- | 0.0d0 |
---------------------------------------------------------------
dxy_Orb dxz_Orb d_yz_Orb d(x2-y2)_Orb d(z2-r2)_Orb |

1 1 1 1 1 |
---------------------------------------------------------------|

0.d0 |
----------------------------------------------------------------

-----------------------------------------------------------------------------
*** Input of the Slater-Koster parameters ***

IDENTATOM=T if true then all basisatoms are identical, for false they are not (-> new inputfile SKPinput)
if the NRL-TB scheme is used, this logical is not relevant, therefore switch it to true or false

ONLYNEXTN=F if true only next neighbors will be considerd, if false lower value is important

RNEIGH=3.5d0 distance in which neighbors are considered in TB-model (>= next N. distance, in units of a)

SKPVARY=T if true the Slater Koster parameters will be varied with the distance, the equation for
this dependence is displayed in PRB 54 4519 -> use inputfile SKP_input_papakonst
in the scheme of NRL-TB parameterization

OVLAP=T if true we consider an overlap matrix which is not the unity matrix
The overlap matrix needs as many parameters as the Slater Koster parameters!

PAPA_BINA=F if true binary compounds will be treated (more than binary are not possible (yet))
TYP_BASAT atomtype of the basis atoms (fit to order in SKP_input_papakonst)
1 1

!!These values will be read in only if "identatom" is true and "skpvary" is false !!
!The second values are only important if "spinlog" and "skpspin" is true,
then the first value stands for the spin majority and the second for the minority!

ONSITES=0.0d0 0.0d0
ONSITEP=0.0d0 0.0d0
ONSITED=0.0d0 0.0d0

s-couplings:
VSS_SIGMA=0.0d0 0.0d0 OSS_SIGMA=0.0d0 0.0d0
VSP_SIGMA=0.0d0 0.0d0 OSP_SIGMA=0.0d0 0.0d0
VSD_SIGMA=0.0d0 0.0d0 OSD_SIGMA=0.0d0 0.0d0

p-couplings:
VPP_SIGMA=0.0d0 0.0d0 OPP_SIGMA= 0.0d0 0.0d0
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VPP_PI= 0.0d0 0.0d0 OPP_PI= 0.0d0 0.0d0
VPD_SIGMA=0.0d0 0.0d0 OPD_SIGMA= 0.0d0 0.0d0
VPD_PI= 0.0d0 0.0d0 OPD_PI= 0.0d0 0.0d0

d-couplings:
VDD_SIGMA=0.0d0 0.0d0 ODD_SIGMA=0.0d0 0.0d0
VDD_PI= 0.0d0 0.0d0 ODD_PI= 0.0d0 0.0d0
VDD_DELTA=0.0d0 0.0d0 ODD_DELTA=0.0d0 0.0d0

----------------------------------------------------------------------
*** Properties for the band structure ***

Way of k-vectors:
Define the way in k space by giving the start and end points, which should be connected by a linear curve.
Put the number of points which should be used for the single way-parts before start- and end-point.
(for example: 100 0. 0. 0. 1. 0. 0.

‘ 100 1. 0. 0. 1. 1. 0.
100 1. 1. 0. 0. 0. 0. )

For a 1-dim. system the way will be determined only by the x-components in the first line.
Therefore in this case only one way-part can be chosen

NUMWAYS=4 number of ways (<=10, otherwise code will crash)

NUMPTSWAY CREATEWAY define way by start- and endpoints (cartesian and in units of 2*pi*(1/a,1/b,1/c))
100 0.5 0. 0. 0.5 0.5 0.
100 0.5 0.5 0. 0.5 0.5 0.5
100 0.5 0.5 0.5 0.0 0.0 0.0
100 0. 0. 0. 0.5 0.0 0.0

FAT_BANDS=T switch to true if the weights of the eigenvectors should be also saved

----------------------------------------------------------------------
*** Properties for the self-consistent calculations (Stoner model and local charge neutrality) ***

TB_SELFC=T if true self consistent calculation will be executed
(Attention: if true, lower exchange-energies are start-values for the calculation)

SELF_U U_LCN for the local charge neutrality in eV (5 eV is a reasonable value)
1 5.0d0
2 5.0d0

CHARGE_0 start-values for the mulliken-charges and the desired charge for local charge neutrality calculation
1 8.0d0 8.0d0

Method of Mixing:

first method: (slow, but stable)
MIX_LIN=F linear mixing with: alpha*u_new+(1-alpha)*u_old

MIX_ALPHA=0.1d0 should be between 0 and 1

second method: (fast, but could be unstable)
MIX_BROY=T Broyden-mixing
N_IN_LIN=3 number of linear mixing steps before Broyden mixing starts

MAX_ITER=400 maximum number of iterations
SELF_COND=0.00001d0 condition for ending the self-consistent calculation: abs(u_new-u_old)<epsilon

RESTA_SC=F if true starting charges are imported from TB_SC_values.dat, from a specific step:
RESTA_IT=0 this determines the specific step

----------------------------------------------------------------------
*** Magnetic Properties and SOC ***

SPINLOG= T true: introduce spin up and spin down energybands (-> dim(H) is 2x larger)
SKP_SPIN=F if true the SKP are different for different spins (--> 2x #SK-parameter, use only SKPinput as file)
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can not be used together with NRL-TB parameterization

exchange energies (in eV) (scheme: atom-nr. s-orb p-orb d-orb)
Use positive exchange energies! For antiferromagnetism use non-collinear magnetism.
For a reasonable approximation choose s- and p-splitting 10 times smaller than d-splitting.
XC_ENERGY

1 0.12 0.12 1.2

STON_PARA Stoner parameter of s-, p- and d-orbital in eV (Regard: exchange_energy=0.5*I*M)
1 0.096d0 0.096d0 0.96d0
1 0.058d0 0.058d0 0.58d0

SET_GAXIS=F if true a global spin-rotation is performed (switch on SOC!)

ROT_SPIN= 0.0d0 0.0d0 0.0d0 give the direction of the rotated spins
(important: Do not mix this global rotation with the individual rotation in the non-collinear case!)

SOCLOG= F with (true) or without (false) Spin-Orbit-Coupling

----------------------------------------------------------------------
*** Non-collinear-Magnetism (including anti-ferromagnetism) ***
IMPORTANT: Switch the SOC-logical to true, and use SOC parameters of 0, if no SOC case is wished

NCMAG=F switch to true if non collinear magnetism should be considered

-------non-collinearity by hand:
NC_IN_UC=F switch to true if the lower angles for the mag. moments should be set by hand

If true then fill up following tabel: (atomnr. in unit cell | angle theta | angle phi )
(angles in degree; rot-axis is y for theta and z for phi)

NC_ANGLES
1 0.0d0 0.0d0
2 0.0d0 0.0d0

-------Constraint for magnetic moments:
CONST_ANG=F switch to true if the directions of the magnetic mopmetns should be fixed
U_CONST= 0.d0 "Lagrange Parameter" for the constraint in eV (5 eV is reasonable)

-------Spin-spirals:
BLO_WAVE=F switch to true if a spin-spiral should be used

If true then specify spin-spiral :
BLO_THETA= 0.0d0 cone angle in degrees (set to 0 for flat-spiral!)
BLO_Q= 0.0d0 0.0d0 0.d0 q-vector of the spiral (in units of 2*pi*(1/a,1/b,1/c)!)

FLAT_SPIR=F switch to true to use a flat spiral for surface systems (i.e.: m rotating in x-z-plane)
!! cone angle has to be 0 in this case !!

-------Treatment of SOC in spin-spirals:
SOC_PERTU=F switch to true if a 1st order perturbation theoretical treatment of SOC should be

executed in the spin-spiral case
CHG_FE=F if true the Fermi energy is changed after adding the 1st order SOC contribution

-------q-mesh:
LOG_QMESH=F switch to true if a q-mesh should be created (necessary for J_ij calculation)
BZQDIVIDE= 10 10 10 number of points of q mesh along reciprocal Bravais directions

ATTENTION: points of q mesh have to fit to relations of a,b,c -
it would be good to choose the values even

QPOIBZ= 1000 number of points in full BZ for q-mesh
IRRQBZ=T use irreducible part of BZ (true) or not (false) for the q-mesh

-------q-way:
LOG_Q_WAY=F switch on if one wants to define a q-way for the spin-spiral case
NUMQWAYS=5 number of ways (<=10, otherwise code will crash)
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NUM_QWAY CREA_QWAY define way by start- and endpoints (cartesian and in units of 2*pi*(1/a,1/b,1/c) )
10 0.0d0 0.d0 0.d0 0.5d0 0.5d0 0.d0
10 0.5d0 0.5d0 0.d0 0.5d0 0.5d0 0.5d0
10 0.5d0 0.5d0 0.5d0 0.d0 0.d0 0.d0
10 0.d0 0.d0 0.d0 1.0d0 0.0d0 0.0d0
10 1.0d0 0.0d0 0.0d0 0.5d0 0.5d0 0.0d0

----------------------------------------------------------------------
*** Cut Bondings *** ! ALPHA STATUS

If you want to cut bondings, set the logical to .true. and describe the bonding you want to cut with its bonding vector.
You can see the according vector in the file "shells_neighbours.dat"!

BONDCUT=F if true specified bonds will be cut out

To define the bondings, which should be cut out write for example: 1 0.75 0. 0. ,
if the bonding with the vector (0.75,0,0) should be cut out (in units of a) in the cluster of basisatom 1.
IMPORTANT: Take care to cut bondings in a symmetric way, otherwise the Hamiltonian could be non-hermitian.

NUMCUTBON=2 number of bond-cuts

SPECBONDS specific bondings, which should be cut out (each bonding in one line)
1 0. 0. 1.5
2 0. 0. -1.5

137



Appendix - Example of the inputcard

138



D Appendix - Keywords of the
inputcard

This appendix shows a list containing all appearing keywords in the inputcard. Addi-
tionally the corresponding variables of the JuTiBi code and a short description for each
keyword is given below.

Keyword Variable name Short description
#ORB temporary value This keyword is used to read in the number

of orbitals for each atom.
ALATBASIS alatc The lattice constants in the form a, b

a
and c

a
.

BASATOMS basis The vectors for the basis atoms in the unit
cell are saved columnwise in the array
basis. Note that the vectors of the basis
atoms are saved in cartesian coordinates
into the array regardless of the logical
CARTESIAN in the inputcard. The vectors
are given in units of (a,b,c) depending on
the cartesian component.

BLO_Q blo_q The spiral vector q of a spin-spiral should
be enterd in cartesian representation and in
units of 2π · ( 1

a
, 1
b
, 1
c
).

BLO_THETA blo_theta Enter the cone angle Θ of the spin-spiral in
degrees.

BLO_WAVE blo_wave If true a spin-spiral is considered within the
gen. Bloch theorem.

BONDCUT bondcut If true the user can cut out some specified
bondings of the crystal.

BRAVAIS abravais The Bravais vectors are stored in the
columns of this array. Note that the Bravais
vectors are in units of (a,b,c), depending on
the cartesian component.

BZDIVIDE nkxyz Number of k-points along the reciprocal
Bravais vector directions in the k-mesh
division.

Continued. . .
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Keyword Variable name Short description
BZQDIVIDE nqxyz Number of q-points along the reciprocal

Bravais vector directions in the q-mesh
division.

CARTESIAN LCART1 If T the vectors of the basis atoms are
imported in cartesian representation,
whereas for F the Bravais representation is
used.

CHARGE_0 total_mullikan_
charge, mullikan_
charge_start

The total mulliken charge for each basis
atom and the desired reference charge
within the local charge neutrality
description for all basis atoms. See eq. 2.44
for more details.

CHG_FE log_change_fermi_
energy

If true the Fermi energy will be recalculated
after adding the 1st order contribution from
SOC in the spin-spiral calculation with
soc_pertubation=true.

CONST_ANG log_theta_
constraint

If true a constraint is used to pin the Θ
angle of the magnetic moments. It works
for spin-spirals as also for the case
nc_in_uc=true.

CREA_QWAY startpts, endpts1 The start- and endpoints of the q-paths.
CREATEWAY startpts, endpts1 The start- and endpoints of the k-paths.
DOS_LOCAL dos_local If true the DOSs are calculated in the local

spin-frame of the atoms.
DOSORBAT Dosorbat If true the partial DOS is calculated

(i.e. the atom and orbital resolved DOS).
FACLOR faclor In a region of 2*faclor*lor_width around

an energy eigenstate the DOS-contribution
is calculated, whereas outside this region the
DOS-contribution is approximated to zero.

FAT_BANDS fat_bands If true the weights of the eigenvectors for
the band structure calculation is also
calculated and written out. These weights
can be used for example in fat-band
representations.

FERM_BROD fermi_broadening The broadening kB · T in the Fermi-Dirac
smearing function in eV.

Continued. . .

1Not in the list of the appendix E.
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Keyword Variable name Short description
FLAT_SPIR flat_spiral If true a spin-spiral rotating in the

x− z-plane is calculated. Note that
blo_theta has to be zero in this case. Note
that this form of spiral is necessary to
investigate DMI in surface systems.

HARD_DISK hard_disk If true the eigenvectors and modified
eigenvectors (see eq. 2.32) are saved onto
the hard disk, instead in the memory.
ATTENTION: This is not suited for very
large systems.

IDENTATOM identatoms1 If true the SKPs are created within the
assumption that the basis atoms are
identical. Note that in the case SKPVARY=T
this keyword is insignificant!

IRRBZ irr If true the irreducible part of the k-mesh is
calculated.

IRRQBZ irr_q If true the irreducible part of the q-mesh is
calculated.

KPOIBZ npoibz Number of k-points in the full k-mesh
LMAXIMAL lmax

∑
l(2 · l + 1), l: angular moment quantum

number ; for treating s, p and d-orbitals
leave it to the value 9.

LOG_F_SUR log_fermi_surface If true a file for the external program
XCrysDen is created to calculate the Fermi
surface of a 3-dim. system.

LOG_Q_WAY log_q_way If true the magnon dispersion along a q-way
in the Brillouin zone can be calculated.

LOG_QMESH log_qmesh If true the energies of spin-spirals with
q-values from the full or irr. Brillouinzone
are calculated. This is necessary to
construct the file jenerg.dat, which can be
used to calculate the Heisenberg
exchange-coupling parameters.

LOGSPEC log_spec_orbat If true only one specific partial DOS for an
atom and an orbital is calculated.

LORWIDTH lor_width The width in eV of the Lorentzians used in
the DOS-calculation (see eq. 2.30 and
subroutine calc−DOS).

MAXBASIS numbasis_max1 The maximum number of basis atoms
necessary for the allocation of arrays in the
cluster generation.

Continued. . .
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Keyword Variable name Short description
MAXCLUST max_num_cluster Maximum number of Bravais vectors

considered in (Bravais-) cluster generation
MAX_ITER max_iter Maximum number of iterations, after which

the self-consistency will stop.
MIX_ALPHA mix_alpha The mixing parameter for the linear

(simple) mixing should be between 0 and 1.
MIX_BROY mix_broy If true an extended Broyden mixing scheme

[49] is used in the self-consistency.
MIX_LIN mix_lin If true simple mixing is used in the

self-consistency.
N_IN_LIN n_init_lin Number of simple mixing steps before using

Broyden mixing (only relevant if
mix_broy=true).

NC_IN_UC nc_in_uc If true the directions of the magnetic
moments can be set by hand.

NC_ANGLES nc_angles The angles for the magnetic d-moments for
each basis atom. The first value in the row
should be the Θ angle, whereas φ is saved
as second value. The angles should be
enterd in degrees (not larger than 180◦). If
nc_in_uc=T and blo_wave=T these angles
play the role of additional phase angles!

NCMAG nc_mag If true non-collinear magnetism can be
treated. Whether spin-spiral calculations
within the gen. Bloch theorem or setting
the directions of the magnetic moments by
hand, this has to be still defined.

NUM_QWAY numpts_qway Number of q-points for the q-paths.
NUMBASIS numbasis Number of basis atoms.
NUMCUTBON num_cut_bonds1 The number of removed bondings.
NUMELUC numelectrons_uc Number of electrons in the unit cell.
NUMENDOS num_energy_DOS Number of energy points for the

energy-mesh in the DOS-calculation (see
subroutine calc−DOS).

NUMPTSWAY numptsway Number of k-points for each k-path.
NUMQWAYS numendpts_qway Number of partial ways in the creation of

the q-path
NUMWAYS numendpts Number of partial ways in the creation of

the k-path
Continued. . .
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Keyword Variable name Short description
ONLYNEXTN onlynextn1 If true only the nearest neighbours are

considered within the hopping calculation.
Note that for the NRL-TB parametrization
this should be deactivated.

ONSITES, etc. onsite_s, etc. The on-site energies of the s-, p- and
d-orbitals for all basis atoms. In the case of
the NRL-TB parametrization these
keywords are inactive.

OSS_SIGMA, etc. Soss_sigma, etc. These are the spin-dependent Slater-Koster
parameters for the description of the
overlap matrix. For more details see
Svss_sigma in this reference list.

OVLAP ovlap If true the generalized eigenvalue problem
with an overlap matrix will be solved. This
is recommended for the NRL-TB
parametrization.

PAPA_BINA papa_binary If true the NRL-TB parametrization for
binaries will be used (see eq. 2.25).

QPOIBZ npoiqbz Number of q-points in the full q-mesh
RCUTOFF R_cutoff The radius of the sphere in units of the

lattice constant a in which the neighbours
around a basis atom should be considered in
the cluster generation in the subroutine
clsgen99.

RESTA_IT restart_iteration Specifies the iteration step with
corresponding starting charges and
exchange energies in the file
TB_SC_values.dat from which the
self-consistency should start again.

RESTA_SC restart_sc If true the self-consistency starts with
certain starting values for the
mulliken-charges and exchange energies not
from the inputcard but rather from the file
TB_SC_values.dat, which contains the
charges and exchange energies of each
iteration step from an earlier calculation.

RMAXIMAL RMAX11 This radius (in units of a) is involved in the
definition of a rough pre-constructed cluster
consisting of Bravais vectors. It is only
important that the radius is not too small.

Continued. . .
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Keyword Variable name Short description
RNEIGH Rneigh1 This defines the cutoff distance in units of

the lattice constant a from which the
hopping parameters will be set to zero.

ROT_SPIN new_gaxis The new direction for the magnetic
moments,after performing the global
spin-rotation (set_gaxis=true).

s_Orb, px_Orb etc. orbitals1 With the help of these keywords the used
(or not used) orbitals for each basis atom
can be specified.

SELF_COND sc_cond The condition ε for ending the
self-consistent loop: |vnew − vold| ≤ ε.

SELF_U loc_charge_U The local charge neutrality parameters
ULCN for two atom-types. More than 2
atom-types should not be treated with the
code.

SET_GAXIS set_gaxis If true a global spin-rotation is performed,
so that the magnetic moments point along
new_gaxis(:). Note that this rotation
should not be combined with
nc_in_uc=true.

SKP_SPIN skpspin If true the SKPs can be defined
spin-dependent. Both V σσ

ll′m and V σσ′

ll′m can be
defined. This does not work within the
NRL-TB parametrization.

SKPVARY skpvary If true the NRL-TB parametrization [3] is
used to describe the non-magnetic system.

SMEAR_MAG smear_mag If true a Fermi-Dirac smearing function is
used to calculate charges, DOS etc.

SOC-Parameter soc_p, soc_d The spin-orbit coupling parameters ξi (see
eq. 2.61) in eV for all basis atoms.

SOC_PERTU soc_pertubation If true spin-orbit coupling is taken into
account for a spin-spiral calculation by
using 1st order perturbation theory.

SOCLOG soclog If true spin-orbit-coupling is taken into
account. In principle the logical determines,
if the Hamiltonian is diagonalized in the full
spin-frame or separately in spin-up and
spin-down. Therefore this logical has to be
also true for treating non-collinear
magnetism.

Continued. . .
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Keyword Variable name Short description
SPECBONDS cluster_center, xx,

yy, zz1
The specified direction of the bondings
within the cluster which should be removed.

SPECORBAT spec_at, spec_orb Specifies the basis atom and orbital, for
which the partial DOS should be calculated
in the case log_spec_orbat=true.

SPINLOG spinlog If true the electron spin is considered by
introducing a spin-frame for the
Hamiltonian. This is necessary to treat
magnetism!

STON_PARA stoner_para The s-, p- and d-orbital Stoner parameters
for maximal two atom-types. More than 2
atom-types should not be treated with the
code.

TB_SELFC tb_sc If true the self-consistent tight-binding
scheme is used (see fig. 2.9).

TYP_BASAT type_basatom The atom type of the basis atoms, needed
for the NRL-TB parametrization for
binaries to assign the correct parameter set
(see also the file input_SKP_papakonst).

U_CONST U_con The Lagrange parameter of the constraint
for pinning the Θ angle of the magnetic
moments. It should be large enough to
ensure a effective pinning. A value of about
5 meV is reasonable.

VSS_SIGMA, etc. Svss_sigma, etc. The spin-dependent Slater-Koster
parameters for all possible bondings within
the unit cell. The energies are in the units
of the user’s choice in the inputcard. In
the case of the NRL-TB parametrization
these arrays become unimportant.

XC_ENERGY xcenergy The exchange energies for all basisatoms
and s, p and d orbitals.

ZATOM atomic_number The atomic numbers of the basis atoms in
the crystal. Unlike in ab-initio codes, the
atomic number is rather unimportant in
this program. It can be used to give the
basis atom a "name".
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E Appendix - List of variables

This appendix lists all input- and output-variables of the described subroutines in the
section 6.2. For each variable the name, the data-type including the dimensions, the oc-
currence in the subroutines and an usually very short description is presented. Together
with the chapters 2 and 6 this should give a rather detailed description of the JuTiBi
code. Therefore this appendix is rather unimportant for users, who only want to use the
code to calculate and do not have the intention to understand the code in detail or even
want to modify it for their purposes. For all others I will give some more informations
how to work with the list.

• The variable names are alphabetically sorted from A to Z.

• For the multi-dimensional arrays I use the term array(:,x) (or array(x,:)) to
indicate that an explained property is located in the first entry (or second entry)
of the array.

147



Appendix - List of variables

V
ar
ia
b
le

n
am

e
T
yp

e
O
cc
u
rr
en

ce
S
h
or
t
d
es
cr
ip
ti
on

ab
cl

at
c

re
al
*8

(3
)

fin
dg

rp
,b

zi
rr
3d

,r
rg
en
,

cl
sg
en
99

,r
ot

at
e −

E
V
,

sa
ve
−

ee
−

ev
,

sa
ve
−

ee
−

ev
−

on
−

h
ar

d
d
is

k
,

sc
−

m
ix

in
g
,

ca
lc
−

fi
n
al
−

ch
ar

ge
s,

ca
lc
−

to
ta

l −
en

er
gy

T
he

la
tt
ic
e
co
ns
ta
nt
s
in

th
e
fo
rm

a
,b

an
d
c.

ab
ra

va
is

re
al
*8

(3
,3
)

la
tt

ix
−

T
B
,fi

nd
gr
p,

bz
ir
r3
d,

on
ed

im
−

k
m

es
h

T
he

B
ra
va
is

ve
ct
or
s
ar
e
st
or
ed

in
th
e

co
lu
m
ns

of
th
is
ar
ra
y.

N
ot
e
th
at

th
e
B
ra
va
is

ve
ct
or
s
ar
e
in

un
it
s
of

(a
,b
,c
),
de
pe

nd
in
g
on

th
e
ca
rt
es
ia
n
co
m
po

ne
nt
.

ab
ra

va
is

_a
u

re
al
*8

(3
,3
)

fin
dg

rp
,o

n
ed

im
−

k
m

es
h
,

rr
ge
n,

ca
lc
−

to
ta

l −
en

er
gy

,
cr

ea
te
−

in
p
u
t −

J
ij

T
he

B
ra
va
is

ve
ct
or
s
ar
e
st
or
ed

in
th
e

co
lu
m
ns

of
th
is
ar
ra
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ra
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re
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−
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−
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−
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p
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ra
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−
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−

p
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p
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−
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−
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p
or

t −
d
at

a −
x
cr

y
sd

en

T
he

la
tt
ic
e
co
ns
ta
nt
s
in
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.
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b
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re
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r
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ra
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.
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re
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−
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−
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d
is

k

T
he

ba
nd

en
er

gi
es

of
th
e
k
-d
ep

en
de
nt

H
am

ilt
on

ia
n
fo
r
a
sp
ec
ia
lk

-p
oi
nt
.

ba
si

s
re
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−
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−
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−
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ro
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−
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d
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e
ba

si
s
at
om

s
in

th
e
un

it
ce
ll
ar
e
sa
ve
d
co
lu
m
nw

is
e
in

th
is

ar
ra
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re
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−
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−
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−
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−
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ra
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e

sa
ve
d
in

ca
rt
es
ia
n
co
or
di
na

te
s
re
ga

rd
le
ss

of
th
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b
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b
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−
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−
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b
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−
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−
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−
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−
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−
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ra
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−

lo
ca

l −
to
−

gl
ob

al
,

cr
ea

te
−

H
m

ag
n
et

ic
,

sc
−

m
ix

in
g
,

ca
lc
−
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−
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−
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−
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ra
d.

C
on

ti
nu

ed
..
.

150
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b
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−
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−
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b
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−
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−
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e

ge
n.

B
lo
ch

th
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e
us
er

ca
n
cu
t
ou

t
so
m
e
sp
ec
ifi
ed

bo
nd

in
gs

of
th
e
cr
ys
ta
l.
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th
is

lin
e
of

th
e

in
pu

tc
ar

d.
CH

AR
_K

EY
ch
ar
*1

0
Io
in
pu

t
T
he

ke
yw

or
d,

w
hi
ch

sh
ou

ld
be

se
ar
ch
ed

in
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p
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r
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at
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−
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m
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el
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e
de
ns
ity

m
at
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x
fo
r
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m
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)
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re
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ra
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b
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t(
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ra
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at
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ra
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cl

us
te

r_
at

om
_i
nd

ex
in
t(
ma

x_
nu

mb
er

_
cl
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−
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p
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b
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at
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−
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−
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at
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−
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.
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−
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−
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−
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−
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ra
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−

m
ix

in
g

T
he

di
m
en
si
on

of
th
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−
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=
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mH
am

il
to

n,
w
he
re
as

fo
r

so
cl

og
=t

ru
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−
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b
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−
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in
−

ro
t,

H
am

il
to

n
−

d
ia

g
,r

ot
at

e −
E

V
,

sa
ve
−

ee
−

ev
,

sa
ve
−

ee
−

ev
−

on
−

h
ar

d
d
is

k
,

ca
lc
−

ch
ar

ge
s,

ca
lc
−

fi
n
al
−

ch
ar

ge
s,

ca
lc
−
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p
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−
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−
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−
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−
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−
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−
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p
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ra
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−
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−
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−
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−
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−
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−
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−
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ra
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−
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−
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−

to
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at
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−
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−
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−
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−
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−
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re
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re
pr
es
en
ta
ti
on

of
th
e
(i
rr
ed
uc
ib
le
)
k
-m

es
h.

N
ot
e
th
at

th
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b
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en
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re
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re
pr
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re
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b
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T
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d
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e
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n
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re
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−
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re
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ra
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p
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−
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re
pr
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e
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−

fi
n
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−
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st
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at
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n
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d
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m
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ea
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−
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b
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te
−

H
k
−
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−
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b
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−
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−
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ra
m
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at
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ra
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at
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.
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at
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ra
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c
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at
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−
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ta

l −
en

er
gy

If
tr
ue

a
co
ns
tr
ai
nt

is
us
ed

to
pi
n
th
e

Θ
an

gl
e
of

th
e
m
ag

ne
ti
c
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ra
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re
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at
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−
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Appendix - List of variables
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b
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re
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−
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−

H
m
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−
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c
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ra
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−
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−
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−
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−
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at
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r
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p
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m
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m
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M
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ra
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ra
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ra
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p
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b
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M
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*m
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ra
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Appendix - List of variables
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b
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e
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e
re
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ba
si

s,
lm

ax
,2
)

ca
lc
−

ch
ar

ge
s,

sc
−

m
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n
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at
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re
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−
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−
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ra
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−
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−
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at
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re
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F Appendix - Files in the JuTiBi
Package

This appendix lists all files contained in the JuTiBi-package:

Fortran-files (.f):
ioinput, readdim, lattix_TB, pointgrp, help_routines, findgroup, bzirr3d, onedim_
kmesh, rrgen, clsgen99, cut_bondings, input_SKP, read_sc_output, moments_local_
to_global, protohamiltonian, SKP_by_handpapakonst_input, create_papa_hopping,
proto_SOC, create_q_way, create_Hmagnetic, create_H0_SKP_by_hand, create_Hk_
papa, create_H_loc_neut, global_spin_rot, Hamilton_diag, rotate_EV, save_ee_
ev, save_ee_ev_on_harddisk, sort_energies, calc_Fermi_energy, get_eigenvectors,
calc_charges, broyden, sc_mixing, calc_final_charges, create_input_Jij, calc_
total_energy, export_data_xcrysden, export_data_berrycurv, transform_DOS_local,
calc_DOS, create_k_way, JuTiBi_main

Input (in folder input):
inputcard, SKPinput, SKP_input_papakonst

Output (in folder data_temp as .dat files):
bandenergies_up, bandenergies_down, charges, conv_charges, DOS_atom_orbital_
resolved_down, DOS_atom_orbital_resolved_up, Eq_1storder_SOC_layer_orbital_
resolved, Eq_1storder_SOC_layer_resolved, Eq_1storder_SOC, Eq, fermi_surface.
bxsf, basics.berrycurv, hopping.berrycurv, charges.berrycurv, jenerg, kmesh,
shells_neighbours, SOC_bandenergies, SOC_DOS_atom_orbital_resolved_down, SOC_
DOS_atom_orbital_resolved_up, SOC_Total_DOS, TB_SC_values, Total_DOS_down, Total_
DOS_up

Data for the Tutorial (in folder inputcards_for_Tutorial):

folder Copper-bandstructure: bandenergies_Cu, inputcard_Cu_converge, inputcard_
Cu, parameter_set_Cu

folder DMI: Eq_1storder_SOC_FePt_chain, inputcard_DMI_Fe_Pt_chain, plot_Eq_
1st_order.py
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folder Iron-bandstructure: bandenergies_Fe_down, bandenergies_Fe_up, inputcard_
Fe, parameter_set_Fe, plot_bands.py

folder Iron-DOS: DOS_atom_orbital_resolved_Fe_down, DOS_atom_orbital_resolved_
Fe_up, inputcard_Fe_DOS, plot_DOS.py, TB_SC_values, Total_DOS_Fe_down, Total_
DOS_Fe_up, Total_DOS_up_med, Total_DOS_up_smeared, Total_DOS_up_spiky

folder MCA-Femonolayer: inputcard_MCA_Fe_monolayer_x, inputcard_MCA_Fe_monolayer_
z

folder Spinspirals-bccFe: Eq_bcc_Fe_ft_90, Eq_bcc_Fe_FT, Eq_bcc_Fe_sc_90, Eq_
bcc_Fe_sc, inputcard_bccFe_force_theorem, inputcard_bccFe_self_consistent,
plot_bcc_Fe_Eq.py

folder Spinspiral-Fechain: inputcard_gen_BT, inputcard_mag_unitcell

If a file is missing in your JuTiBi-package and you desperately need it, please feel free
to contact t.schena@fz-juelich.de!
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